Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS Genet ; 16(10): e1009115, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125365

RESUMEN

Centromeres are chromosomal domains essential for kinetochore assembly and correct chromosome segregation. Inconsistent in their underlying DNA sequences, centromeres are defined epigenetically by the presence of the centromere-specific histone H3 variant CenH3. Most of the analyzed eukaryotes have monocentric chromosomes in which CenH3 proteins deposit into a single, primary constriction visible at metaphase chromosomes. Contrary to monocentrics, evolutionary sporadic holocentric chromosomes lack a primary constriction and have kinetochore activity distributed along the entire chromosome length. In this work, we identified cCENH3 protein, the centromeric H3 histone of the coleopteran model beetle Tribolium castaneum. By ChIP-seq analysis we disclosed that cCENH3 chromatin assembles upon a repertoire of repetitive DNAs. cCENH3 in situ mapping revealed unusually elongated T. castaneum centromeres that comprise approximately 40% of the chromosome length. Being the longest insect regional centromeres evidenced so far, T. castaneum centromeres are characterized by metapolycentric structure composed of several individual cCENH3-containing domains. We suggest that the model beetle T. castaneum with its metapolycentromeres could represent an excellent model for further studies of non-canonical centromeres in insects.


Asunto(s)
Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Tribolium/genética , Animales , Secuencia de Bases/genética , Cromatina/genética , Segregación Cromosómica/genética , Cinetocoros
2.
BMC Biol ; 20(1): 259, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36397071

RESUMEN

BACKGROUND: Satellite DNAs (satDNAs) are tandemly repeated non-coding DNA sequences that belong to the most abundant and the fastest evolving parts of the eukaryotic genome. A satellitome represents the collection of different satDNAs in a genome. Due to extreme diversity and methodological difficulties to characterize and compare satDNA collection in complex genomes, knowledge on their putative functional constraints and capacity to participate in genome evolution remains rather elusive. SatDNA transcripts have been detected in many species, however comparative studies of satDNA transcriptome between species are extremely rare. RESULTS: We conducted a genome-wide survey and comparative analyses of satellitomes among different closely related Meloidogyne spp. nematodes. The evolutionary trends of satDNAs suggest that each round of proposed polyploidization in the evolutionary history is concomitant with the addition of a new set of satDNAs in the satellitome of any particular Meloidogyne species. Successive incorporation of new sets of satDNAs in the genome along the process of polyploidization supports multiple hybridization events as the main factor responsible for the formation of these species. Through comparative analyses of 83 distinct satDNAs, we found a CENP-B box-like sequence motif conserved among 11 divergent satDNAs (similarity ranges from 36 to 74%). We also found satDNAs that harbor a splice leader (SL) sequence which, in spite of overall divergence, shows conservation across species in two putative functional regions, the 25-nt SL exon and the Sm binding site. Intra- and interspecific comparative expression analyses of the complete satDNA set in the analyzed Meloidogyne species revealed transcription profiles including a subset of 14 actively transcribed satDNAs. Among those, 9 show active transcription in every species where they are found in the genome and throughout developmental stages. CONCLUSIONS: Our results demonstrate the feasibility and power of comparative analysis of the non-coding repetitive genome for elucidation of the origin of species with a complex history. Although satDNAs generally evolve extremely quickly, the comparative analyses of 83 satDNAs detected in the analyzed Meloidogyne species revealed conserved sequence features in some satDNAs suggesting sequence evolution under selective pressure. SatDNAs that are actively transcribed in related genomes and throughout nematode development support the view that their expression is not stochastic.


Asunto(s)
ADN Satélite , Nematodos , Animales , ADN Satélite/genética , Nematodos/genética
3.
Mol Biol Evol ; 38(5): 1943-1965, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33399875

RESUMEN

Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.


Asunto(s)
Centrómero , Histonas/genética , Tylenchoidea/genética , Animales , Proteína A Centromérica/genética , Secuenciación de Inmunoprecipitación de Cromatina , Secuencia Conservada , Evolución Molecular , Secuencias Repetidas en Tándem
4.
Prog Mol Subcell Biol ; 60: 57-83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386872

RESUMEN

Noncoding DNA sequences repeated in tandem or satellite DNAs make an integral part of every eukaryotic genome. Development and application of new methodological approaches through time enabled gradual improvement in understanding of structural and functional roles of these sequences, early misconsidered as "junk DNA". Advancing approaches started adding novel insights into details of their existence on the genomic scale, traditionally hard to access due to difficulties in analyzing long arrays of nearly identical tandem repeats of a satellite DNA. In turn, broadened views opened space for the development of new concepts on satellite DNA biology, highlighting also specificities coming from different groups of organisms. Observed diversities in different aspects and in organizational forms of these sequences proclaimed a need for a versatile pool of model organisms. Peculiarities of satellite DNAs populating genomes of bivalve mollusks, an important group of marine and fresh-water organisms, add to the diversity of organizational principles and associated roles in which tandemly repeated sequences contribute to the genomes.


Asunto(s)
Bivalvos , ADN Satélite , Animales , Bivalvos/genética , ADN Satélite/genética , Evolución Molecular , Genómica , Secuencias Repetidas en Tándem
5.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202698

RESUMEN

Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.


Asunto(s)
Crassostrea/genética , ADN Satélite , Genoma , Genómica , Animales , Mapeo Cromosómico , Evolución Molecular , Genómica/métodos , Hibridación Fluorescente in Situ , Patrón de Herencia
6.
Genetica ; 145(4-5): 379-385, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28653298

RESUMEN

Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.


Asunto(s)
Bivalvos/genética , Elementos Transponibles de ADN , Secuencias Invertidas Repetidas , Animales , ADN , Genoma
7.
BMC Genomics ; 17(1): 997, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27919246

RESUMEN

BACKGROUND: Satellite DNA (satDNA) sequences are typically arranged as arrays of tandemly repeated monomers. Due to the similarity among monomers, their organizational pattern and abundance, satDNAs are hardly accessible to structural and functional studies and still represent the most obscure genome component. Although many satDNA arrays of diverse length and even single monomers exist in the genome, surprisingly little is known about transition from satDNAs to other sequences. Studying satDNA monomers at junctions and identifying DNA sequences adjacent to them can help to understand the processes that (re)distribute satDNAs and significance that evolution of these sequence elements might have in creating the genomic landscape. RESULTS: We explored sets of randomly selected satDNA-harboring genomic fragments in four mollusc species to examine satDNA transition sites, and the nature of adjacent sequences. All examined junctions are characterized by abrupt transitions from satDNAs to other sequences. Among them, junctions of only one examined satDNA mapped non-randomly (within the palindrome), indicating that well-defined sequence feature is not a necessary prerequisite in the junction formation. In the studied sample, satDNA flanking sequences can be roughly classified into two groups. The first group is composed of anonymous DNA sequences which occasionally include short segments of transposable elements (TEs) as well as segments of other satDNA sequences. In the second group, satDNA repeats and the array flanking sequences are identified as parts of TEs of the Helitron superfamily. There, some array flanking regions hold fragmented satDNA monomers alternating with anonymous sequences of comparable length as missing monomer parts, suggesting a process of sequence reorganization by a mechanism able to excise short monomer parts and replace them with unrelated sequences. CONCLUSIONS: The observed architecture of satDNA transition sites can be explained as a result of insertion and/or recombination events involving short arrays of satDNA monomers and TEs, in combination with hypothetical transposition-related ability of satDNA monomers to be shuffled independently in the genome. We conclude that satDNAs and TEs can form a complex network of sequences which essentially share the propagation mechanisms and in synergy shape the genome.


Asunto(s)
Elementos Transponibles de ADN , ADN Satélite , Genómica , Animales , Bivalvos/clasificación , Bivalvos/genética , Biología Computacional/métodos , Genoma , Genómica/métodos , Filogenia
8.
Mol Genet Genomics ; 291(3): 1419-29, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26987730

RESUMEN

Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.


Asunto(s)
Moluscos/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Elementos de Nucleótido Esparcido Corto , Animales , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Genoma , Filogenia
9.
Chromosome Res ; 23(3): 427-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26281779

RESUMEN

Three novel repetitive DNA sequences are described, presenting a similar heterochromatic chromosomal location in two hamster species: Phodopus roborovskii and Phodopus sungorus (Cricetidae, Rodentia). Namely, two species-specific repetitive sequences (PROsat from P. roborovskii and PSUchr1sat from P. sungorus) surrounding a third one (PsatDNA), that is shared by both hamster genomes. Fiber-FISH analyses revealed that PROsat intermingles with PsatDNA in P. roborovskii and PSUchr1sat intermingles with PsatDNA in P. sungorus. A model explaining the evolution of this intricate chromosomal distribution is proposed, which can explain better the evolution of these very derivative genomes (in comparison to the ancestral Muroidea). The most plausible evolutionary scenario seems to be the expansion of a number of repeats into other's domain, most probably resulting in its intermingling, followed by the subsequent spread of these complex repeats from a single chromosomal location to other chromosomes. Evidences of an association between repetitive sequences and the chromosome evolution process were observed, namely for PROsat. Most probably, the evolutionary breakpoints that shaped PRO and PSU chromosomes (pericentric inversions and fusions) occurred within the boundaries of PROsat blocks in the ancestor. The repeats high diversity at the heterochromatic regions of Phodopus chromosomes, together with its complex organization, suggests that these species are important models for evolutionary studies, namely in the investigation of a possible relationship between repetitive sequences and the occurrence of chromosomal rearrangements and consequently, in genome evolution.


Asunto(s)
Genoma , Genómica , Phodopus/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Bandeo Cromosómico , Cromosomas de los Mamíferos , Clonación Molecular , ADN Satélite , Estructuras Genéticas , Genómica/métodos , Hibridación Fluorescente in Situ , Mapeo Físico de Cromosoma
10.
Chromosome Res ; 23(3): 583-96, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26293606

RESUMEN

Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.


Asunto(s)
Elementos Transponibles de ADN , ADN Satélite , Retroelementos , Animales , Eucariontes/genética , Regulación de la Expresión Génica , Genoma , Genómica , Heterocromatina/genética , Humanos , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos , Relación Estructura-Actividad
11.
Chromosoma ; 123(4): 313-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24763964

RESUMEN

The centromere is a chromosomal locus responsible for the faithful segregation of genetic material during cell division. It has become evident that centromeres can be established literally on any DNA sequence, and the possible synergy between DNA sequences and the most prominent centromere identifiers, protein components, and epigenetic marks remains uncertain. However, some evolutionary preferences seem to exist, and long-term established centromeres are frequently formed on long arrays of satellite DNAs and/or transposable elements. Recent progress in understanding functional centromere sequences is based largely on the high-resolution DNA mapping of sequences that interact with the centromere-specific histone H3 variant, the most reliable marker of active centromeres. In addition, sequence assembly and mapping of large repetitive centromeric regions, as well as comparative genome analyses offer insight into their complex organization and evolution. The rapidly advancing field of transcription in centromere regions highlights the functional importance of centromeric transcripts. Here, we comprehensively review the current state of knowledge on the composition and functionality of DNA sequences underlying active centromeres and discuss their contribution to the functioning of different centromere types in higher eukaryotes.


Asunto(s)
Centrómero/metabolismo , ADN/metabolismo , Animales , Secuencia de Bases , Evolución Biológica , Humanos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transcripción Genética
12.
Genes (Basel) ; 14(3)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981013

RESUMEN

According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.


Asunto(s)
ADN Satélite , Heterocromatina , Animales , ADN Satélite/genética , Heterocromatina/genética , Secuencia de Bases , Elementos Transponibles de ADN/genética , Evolución Biológica
13.
Genes (Basel) ; 14(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37239359

RESUMEN

The red flour beetle Tribolium castaneum is an important pest of stored agricultural products and the first beetle whose genome was sequenced. So far, one high-copy-number and ten moderate-copy-number satellite DNAs (satDNAs) have been described in the assembled part of its genome. In this work, we aimed to catalog the entire collection of T. castaneum satDNAs. We resequenced the genome using Illumina technology and predicted potential satDNAs via graph-based sequence clustering. In this way, we discovered 46 novel satDNAs that occupied a total of 2.1% of the genome and were, therefore, considered low-copy-number satellites. Their repeat units, preferentially 140-180 bp and 300-340 bp long, showed a high A + T composition ranging from 59.2 to 80.1%. In the current assembly, we annotated the majority of the low-copy-number satDNAs on one or a few chromosomes, discovering mainly transposable elements in their vicinity. The current assembly also revealed that many of the in silico predicted satDNAs were organized into short arrays not much longer than five consecutive repeats, and some of them also had numerous repeat units scattered throughout the genome. Although 20% of the unassembled genome sequence masked the genuine state, the predominance of scattered repeats for some low-copy satDNAs raises the question of whether these are essentially interspersed repeats that occur in tandem only sporadically, with the potential to be satDNA "seeds".


Asunto(s)
Escarabajos , Tribolium , Animales , ADN Satélite/genética , Tribolium/genética , Escarabajos/genética , Cromosomas , Elementos Transponibles de ADN
14.
Genes (Basel) ; 14(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137031

RESUMEN

BACKGROUND: Insects are a sustainable source of protein for human food and animal feed. We present a genome assembly, CRISPR gene editing, and life stage-specific transcriptomes for the yellow mealworm, Tenebrio molitor, one of the most intensively farmed insects worldwide. METHODS: Long and short reads and long-range data were obtained from a T. molitor male pupa. Sequencing transcripts from 12 T. molitor life stages resulted in 279 million reads for gene prediction and genetic engineering. A unique plasmid delivery system containing guide RNAs targeting the eye color gene vermilion flanking the muscle actin gene promoter and EGFP marker was used in CRISPR/Cas9 transformation. RESULTS: The assembly is approximately 53% of the genome size of 756.8 ± 9.6 Mb, measured using flow cytometry. Assembly was complicated by a satellitome of at least 11 highly conserved satDNAs occupying 28% of the genome. The injection of the plasmid into embryos resulted in knock-out of Tm vermilion and knock-in of EGFP. CONCLUSIONS: The genome of T. molitor is longer than current assemblies (including ours) due to a substantial amount (26.5%) of only one highly abundant satellite DNA sequence. Genetic sequences and transformation tools for an insect important to the food and feed industries will promote the sustainable utilization of mealworms and other farmed insects.


Asunto(s)
Tenebrio , Animales , Masculino , Humanos , Tenebrio/genética , Tenebrio/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Color del Ojo , Alimentación Animal/análisis , Larva/metabolismo
15.
Chromosoma ; 120(4): 367-76, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21499744

RESUMEN

The TTAGG repeat, the only determined telomerase-dependent sequence in the Insecta, is generally reputed to be the canonical telomeric motif within the class. By studying the distribution of telomeric DNAs in 30 coleopteran beetles using Southern hybridization, BAL 31 DNA end-degradation assay and fluorescence in situ hybridization, we showed that arrays built of a TCAGG repeat substitute for (TTAGG)n sequences in all tested species within the superfamily Tenebrionoidea. We also provided the experimental evidence that (TCAGG)n repeats represent the terminal sequences on all chromosomes of the model species Tribolium castaneum. (TCAGG)n repeats are therefore promoted as the first sequence-motif alternative to TTAGG-type chromosome ends in insects. Detection of species negative for both TTAGG and TCAGG reveals that, although widespread, these motifs are not ubiquitous telomeric sequences within the order Coleoptera. In addition, Timarcha balearica proved to be a species that harbors (TTAGG)n repeats, but not at telomeric positions, thus further increasing the complexity of telomeric DNAs. Our experiments discarded CTAGG, CTGGG, TTGGG, and TTAGGG variants as potential replacements in TTAGG/TCAGG-negative species, indicating that chromosome termini of these beetles comprise other form(s) of telomeric sequences and telomere maintenance mechanisms.


Asunto(s)
Cromosomas de Insectos/química , Escarabajos/genética , ADN/química , Repeticiones de Microsatélite , Telómero/química , Animales , Southern Blotting , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Escarabajos/clasificación , Escarabajos/metabolismo , ADN/genética , Desoxirribonucleasas/metabolismo , Hibridación Fluorescente in Situ , Repeticiones de Microsatélite/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Telómero/metabolismo
16.
Genes (Basel) ; 13(3)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35328000

RESUMEN

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.


Asunto(s)
Escarabajos , Insecticidas , Aclimatación , Animales , Escarabajos/genética , Dominica , Larva/genética
17.
Mol Biol Evol ; 27(8): 1857-67, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20203289

RESUMEN

Characterization of heterochromatin in the flour beetle Tribolium audax revealed two highly repetitive DNA families, named TAUD1 and TAUD2, which together constitute almost 60% of the whole genome. Both families originated from a common ancestral approximately 110-bp repeating unit. Tandem arrangement of these elements in TAUD1 is typical for satellite DNAs, whereas TAUD2 represents a dispersed family based on 1412-bp complex higher-order repeats composed of inversely oriented approximately 110 bp units. Comparison with repetitive DNAs in the sibling species Tribolium madens showed similarities in nucleotide sequence and length of basic repeating units and also revealed structural and organizational parallelism in tandem and dispersed families assembled from these elements. In both Tribolium species, one tandem and one dispersed family build equivalent distribution patterns in the pericentromeric heterochromatin of all chromosomes including supernumeraries. Differences in the nucleotide sequence and in the complexity of higher-order structures between families of the same type suggest a scenario according to which rearranged variants of the corresponding ancestral families were formed and distributed in genomes during or after the speciation event, following the same principles independently in each descendant species. We assume that random effects of sequence dynamics should be constrained by organizational and structural features of repeating units and possible requirements for spatial distribution of particular sequence elements. An interspersed pattern of repetitive families also points to the intensive recombination events in heterochromatin. Synergy between the meiotic bouquet stage and satellite DNA sequence dynamics could make a positive feedback loop that promotes the observed genome-wide distribution. At the same time, considering the abundance of these DNAs in heterochromatin spanning the (peri)centromeric chromosomal segments, we speculate that diverged repetitive sequences might represent the DNA basis of reproductive barrier between the two sibling species.


Asunto(s)
Secuencia de Bases , ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Tribolium/genética , Animales , ADN/análisis , Genes de Insecto , Genoma , Humanos , Hibridación Fluorescente in Situ , Masculino , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Tribolium/clasificación
18.
Sci Rep ; 10(1): 15107, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934255

RESUMEN

Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.


Asunto(s)
Crassostrea/genética , Elementos Transponibles de ADN/genética , ADN Satélite/análisis , Genoma de los Insectos , Secuencias Repetitivas Esparcidas , Animales , ADN Satélite/genética , Filogenia
19.
Genes (Basel) ; 11(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599860

RESUMEN

Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.


Asunto(s)
Centrómero/genética , Cromatina/genética , Heterocromatina/genética , Ostreidae/genética , Animales , Inmunoprecipitación de Cromatina , Elementos Transponibles de ADN/genética , Genoma/genética , Histonas/genética , Océano Pacífico
20.
Sci Rep ; 9(1): 19962, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882746

RESUMEN

Terminal repeat retrotransposons in miniature (TRIMs) are small non-autonomous LTR retrotransposons consisting of two terminal direct repeats surrounding a short internal domain. The detection and characterization of these elements has been mainly limited to plants. Here we present the first finding of a TRIM element in bivalves, and among the first known in the kingdom Animalia. Class Bivalvia has high ecological and commercial importance in marine ecosystems and aquaculture, and, in recent years, an increasing number of genomic studies has addressed to these organisms. We have identified biv-TRIM in several bivalve species: Donax trunculus, Ruditapes decussatus, R. philippinarum, Venerupis corrugata, Polititapes rhomboides, Venus verrucosa, Dosinia exoleta, Glycymeris glycymeris, Cerastoderma edule, Magallana gigas, Mytilus galloprovincialis. biv-TRIM has several characteristics typical for this group of elements, exhibiting different variations. In addition to canonically structured elements, solo-TDRs and tandem repeats were detected. The presence of this element in the genome of each species is <1%. The phylogenetic analysis showed a complex clustering pattern of biv-TRIM elements, and indicates the involvement of horizontal transfer in the spreading of this element.


Asunto(s)
Bivalvos/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Animales , Evolución Biológica , Ecosistema , Evolución Molecular , Genoma , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA