Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641477

RESUMEN

Positive-strand RNA [(+)RNA] viruses are important pathogens of humans, animals, and plants and replicate inside host cells by coopting numerous host factors and subcellular membranes. To gain insights into the assembly of viral replicase complexes (VRCs) and dissect the roles of various lipids and coopted host factors, we have reconstituted Tomato bushy stunt virus (TBSV) replicase using artificial giant unilamellar vesicles (GUVs). We demonstrate that reconstitution of VRCs on GUVs with endoplasmic reticulum (ER)-like phospholipid composition results in a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)RNA viruses. TBSV VRCs assembled on GUVs provide significant protection of the double-stranded RNA (dsRNA) replication intermediate against the dsRNA-specific RNase III. The lipid compositions of GUVs have pronounced effects on in vitro TBSV replication, including (-) and (+)RNA synthesis. The GUV-based assay has led to the discovery of the critical role of phosphatidylserine in TBSV replication and a novel role for phosphatidylethanolamine in asymmetrical (+)RNA synthesis. The GUV-based assay also showed stimulatory effects by phosphatidylinositol-3-phosphate [PI(3)P] and ergosterol on TBSV replication. We demonstrate that eEF1A and Hsp70 coopted replicase assembly factors, Vps34 phosphatidylinositol 3-kinase (PI3K) and the membrane-bending ESCRT factors, are required for reconstitution of the active TBSV VRCs in GUVs, further supporting that the novel GUV-based in vitro approach recapitulates critical steps and involves essential coopted cellular factors of the TBSV replication process. Taken together, this novel GUV assay will be highly suitable to dissect the functions of viral and cellular factors in TBSV replication.IMPORTANCE Understanding the mechanism of replication of positive-strand RNA viruses, which are major pathogens of plants, animals, and humans, can lead to new targets for antiviral interventions. These viruses subvert intracellular membranes for virus replication and coopt numerous host proteins, whose functions during virus replication are not yet completely defined. To dissect the roles of various host factors in Tomato bushy stunt virus (TBSV) replication, we have developed an artificial giant unilamellar vesicle (GUV)-based replication assay. The GUV-based in vitro approach recapitulates critical steps of the TBSV replication process. GUV-based reconstitution of the TBSV replicase revealed the need for a complex mixture of phospholipids, especially phosphatidylserine and phosphatidylethanolamine, in TBSV replication. The GUV-based approach will be useful to dissect the functions of essential coopted cellular factors.


Asunto(s)
ARN Bicatenario/genética , ARN Polimerasa Dependiente del ARN/genética , Tombusvirus/genética , Liposomas Unilamelares/metabolismo , Proteínas Virales/genética , Bioensayo , Línea Celular , Retículo Endoplásmico/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ergosterol/metabolismo , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Células Vegetales/metabolismo , Células Vegetales/virología , ARN Bicatenario/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Tombusvirus/metabolismo , Liposomas Unilamelares/química , Proteínas Virales/metabolismo , Replicación Viral
2.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597780

RESUMEN

Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Carmovirus/genética , Chaperonas Moleculares/genética , Nodaviridae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Calcio/metabolismo , ATPasas Transportadoras de Calcio/deficiencia , Carmovirus/metabolismo , Cationes Bivalentes , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Sistema Libre de Células/virología , Transporte Iónico , Manganeso/metabolismo , Nodaviridae/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Tombusvirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
3.
J Virol ; 90(7): 3611-26, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792735

RESUMEN

UNLABELLED: Plus-stranded RNA viruses induce membrane deformations in infected cells in order to build viral replication complexes (VRCs). Tomato bushy stunt virus (TBSV) co-opts cellular ESCRT (endosomal sorting complexes required for transport) proteins to induce the formation of vesicle (spherule)-like structures in the peroxisomal membrane with tight openings toward the cytosol. In this study, using a yeast (Saccharomyces cerevisiae) vps23Δ bro1Δ double-deletion mutant, we showed that the Vps23p ESCRT-I protein (Tsg101 in mammals) and Bro1p (ALIX) ESCRT-associated protein, both of which bind to the viral p33 replication protein, play partially complementary roles in TBSV replication in cells and in cell extracts. Dual expression of dominant-negative versions of Arabidopsis homologs of Vps23p and Bro1p inhibited tombusvirus replication to greater extent than individual expression in Nicotiana benthamiana leaves. We also demonstrated the critical role of Snf7p (CHMP4), Vps20p, and Vps24p ESCRT-III proteins in tombusvirus replication in yeast and in vitro. Electron microscopic imaging of vps23Δ yeast revealed the lack of tombusvirus-induced spherule-like structures, while crescent-like structures are formed in ESCRT-III deletion yeasts replicating TBSV RNA. In addition, we also showed that the length of the viral RNA affects the sizes of spherules formed in N. benthamiana cells. The 4.8-kb genomic RNA is needed for the formation of spherules 66 nm in diameter, while spherules formed during the replication of the ∼600-nucleotide (nt)-long defective interfering RNA in the presence of p33 and p92 replication proteins are 42 nm. We propose that the viral RNA serves as a "measuring string" during VRC assembly and spherule formation. IMPORTANCE: Plant positive-strand RNA viruses, similarly to animal positive-strand RNA viruses, replicate in membrane-bound viral replicase complexes in the cytoplasm of infected cells. Identification of cellular and viral factors affecting the formation of the membrane-bound viral replication complex is a major frontier in current virology research. In this study, we dissected the functions of co-opted cellular ESCRT-I (endosomal sorting complexes required for transport I) and ESCRT-III proteins and the viral RNA in tombusvirus replicase complex formation using in vitro, yeast-based, and plant-based approaches. Electron microscopic imaging revealed the lack of tombusvirus-induced spherule-like structures in ESCRT-I or ESCRT-III deletion yeasts replicating TBSV RNA, demonstrating the requirement for these co-opted cellular factors in tombusvirus replicase formation. The work could be of broad interest in virology and beyond.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Interacciones Huésped-Patógeno , Membranas Intracelulares/virología , ARN Viral/metabolismo , Tombusvirus/fisiología , Replicación Viral , Arabidopsis/genética , Arabidopsis/virología , Eliminación de Gen , Microscopía Electrónica de Transmisión , Peroxisomas/ultraestructura , Peroxisomas/virología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/virología , Nicotiana/genética , Nicotiana/ultraestructura , Nicotiana/virología
4.
J Virol ; 89(10): 5714-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25762742

RESUMEN

UNLABELLED: Similar to other positive-strand RNA viruses, tombusviruses are replicated by the membrane-bound viral replicase complex (VRC). The VRC consists of the p92 virus-coded RNA-dependent RNA polymerase (RdRp), the viral p33 RNA chaperone, and several co-opted host proteins. In order to become a functional RdRp after its translation, the p92 replication protein should be incorporated into the VRC, followed by its activation. We have previously shown in a cell-free yeast extract-based assay that the activation of the Tomato bushy stunt virus (TBSV) RdRp requires a soluble host factor(s). In this article, we identify the cellular heat shock protein 70 (Hsp70) as the co-opted host factor required for the activation of an N-terminally truncated recombinant TBSV RdRp. In addition, small-molecule-based blocking of Hsp70 function inhibits RNA synthesis by the tombusvirus RdRp in vitro. Furthermore, we show that neutral phospholipids, namely, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), enhance RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) shows a strong and dominant inhibitory effect on in vitro RdRp activation. We also demonstrate that PE and PC stimulate RdRp-viral plus-strand RNA [(+)RNA] interaction, while PG inhibits the binding of the viral RNA to the RdRp. Based on the stimulatory versus inhibitory roles of various phospholipids in tombusvirus RdRp activation, we propose that the lipid composition of targeted subcellular membranes might be utilized by tombusviruses to regulate new VRC assembly during the course of infection. IMPORTANCE: The virus-coded RNA-dependent RNA polymerase (RdRp), which is responsible for synthesizing the viral RNA progeny in infected cells of several positive-strand RNA viruses, is initially inactive. This strategy is likely to avoid viral RNA synthesis in the cytosol that would rapidly lead to induction of RNA-triggered cellular antiviral responses. During the assembly of the membrane-bound replicase complex, the viral RdRp becomes activated through an incompletely understood process that makes the RdRp capable of RNA synthesis. By using TBSV RdRp, we show that the co-opted cellular Hsp70 chaperone and neutral phospholipids facilitate RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) has a dominant inhibitory effect on in vitro RdRp activation and RdRp-viral RNA interaction, suggesting that the membranous microdomain surrounding the RdRp greatly affects its ability for RNA synthesis. Thus, the activation of the viral RdRp likely depends on multiple host components in infected cells.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Fosfolípidos/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/enzimología , Proteínas Virales/metabolismo , Activación Enzimática , Proteínas HSP70 de Choque Térmico/genética , Interacciones Huésped-Patógeno , Fosfolípidos/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tombusvirus/genética , Proteínas Virales/genética
5.
PLoS Pathog ; 10(4): e1004087, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763736

RESUMEN

Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tombusvirus/enzimología , Adenosina Trifosfatasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Tombusvirus/genética , Tombusvirus/ultraestructura
6.
J Virol ; 88(10): 5638-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24600009

RESUMEN

UNLABELLED: Replication of plus-strand RNA [(+)RNA] viruses of plants is a relatively simple process that involves complementary minus-strand RNA [(-)RNA] synthesis and subsequent (+)RNA synthesis. However, the actual replicative form of the (-)RNA template in the case of plant (+)RNA viruses is not yet established unambiguously. In this paper, using a cell-free replication assay supporting a full cycle of viral replication, we show that replication of Tomato bushy stunt virus (TBSV) leads to the formation of double-stranded RNA (dsRNA). Using RNase digestion, DNAzyme, and RNA mobility shift assays, we demonstrate the absence of naked (-)RNA templates during replication. Time course experiments showed the rapid appearance of dsRNA earlier than the bulk production of new (+)RNAs, suggesting an active role for dsRNA in replication. Radioactive nucleotide chase experiments showed that the mechanism of TBSV replication involves the use of dsRNA templates in strand displacement reactions, where the newly synthesized plus strand replaces the original (+)RNA in the dsRNA. We propose that the use of dsRNA as a template for (+)RNA synthesis by the viral replicase is facilitated by recruited host DEAD box helicases and the viral p33 RNA chaperone protein. Altogether, this replication strategy allows TBSV to separate minus- and plus-strand syntheses in time and regulate asymmetrical RNA replication that leads to abundant (+)RNA progeny. IMPORTANCE: Positive-stranded RNA viruses of plants use their RNAs as the templates for replication. First, the minus strand is synthesized by the viral replicase complex (VRC), which then serves as a template for new plus-strand synthesis. To characterize the nature of the (-)RNA in the membrane-bound viral replicase, we performed complete RNA replication of Tomato bushy stunt virus (TBSV) in yeast cell-free extracts and in plant extracts. The experiments demonstrated that the TBSV (-)RNA is present as a double-stranded RNA that serves as the template for TBSV replication. During the production of new plus strands, the viral replicase displaces the old plus strand in the dsRNA template, leading to asymmetrical RNA synthesis. The presented data are in agreement with the model that the dsRNA is present in nuclease-resistant membranous VRCs. This strategy likely allows TBSV to protect the replicating viral RNA from degradation as well as to evade the early detection of viral dsRNAs by the host surveillance system.


Asunto(s)
ARN Bicatenario/metabolismo , Moldes Genéticos , Tombusvirus/fisiología , Replicación Viral
7.
PLoS Pathog ; 8(2): e1002537, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359508

RESUMEN

Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3'-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3'-end of the TBSV (-)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (-)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Interacciones Huésped-Parásitos/genética , ARN Viral/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiología , Replicación Viral/genética , Levaduras/virología , ARN Helicasas DEAD-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Levaduras/genética , Levaduras/metabolismo
8.
PLoS Pathog ; 8(2): e1002491, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346747

RESUMEN

Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication.


Asunto(s)
Ciclofilinas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiología , Replicación Viral , Arabidopsis/virología , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Interacciones Huésped-Patógeno , Solanum lycopersicum/virología , Mutación , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Tombusvirus/genética , Proteínas Virales/metabolismo , Ensamble de Virus
9.
Mol Biol Cell ; : mbcE24050236, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110527

RESUMEN

Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein. Deletion of Atg2 in yeast and knockdown of Atg2 in Nicotiana benthamiana resulted in decreased TBSV replication. We found that subversion of Atg2 by TBSV was important to enrich VRO membranes with phosphatidylethanolamine (PE), phosphatidylserine (PS) and PI(3)P phosphoinositide. Interestingly, inhibition of authophagy did not affect efficient recruitment of Atg2 into VROs and over-expression of Atg2 enhanced TBSV replication, indicating autophagy-independent subversion of Atg2 by TBSV. These findings suggest that the pro-viral function of Atg2 lipid transfer protein is in VRO membrane proliferation. In addition, we find that Atg2 interacting partner Atg9 with membrane lipid scramblase activity is also co-opted for tombusvirus replication. Altogether, subversion of Atg2 bridge-type lipid transfer protein provides a new mechanism for tombusviruses to greatly expand VRO membranes to support robust viral replication.

10.
J Virol ; 86(22): 12025-38, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22933278

RESUMEN

Plus-stranded RNA viruses replicate in membrane-bound structures containing the viral replicase complex (VRC). A key component of the VRC is the virally encoded RNA-dependent RNA polymerase (RdRp), which should be activated and incorporated into the VRC after its translation. To study the activation of the RdRp of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we used N-terminal truncated recombinant RdRp, which supported RNA synthesis in a cell-free yeast extract-based assay. The truncated RdRp required a cis-acting RNA replication element and soluble host factors, while unlike the full-length TBSV RdRp, the truncated RdRp did not need the viral p33 replication cofactor or cellular membranes for RNA synthesis. Interestingly, the truncated RdRp used 3'-terminal extension for initiation and terminated prematurely at an internal cis-acting element. However, the truncated RdRp could perform de novo initiation on a TBSV plus-strand RNA template in the presence of the p33 replication cofactor, cellular membranes, and soluble host proteins. Altogether, the data obtained with the truncated RdRp indicate that this RdRp still requires activation, but with the participation of fewer components than with the full-length RdRp, making it suitable for future studies on dissection of the RdRp activation mechanism.


Asunto(s)
ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Tombusvirus/enzimología , Tombusvirus/genética , Proteínas Virales/química , Sistema Libre de Células , Activación Enzimática , Escherichia coli/metabolismo , Genoma Viral , Nucleasa Microcócica/metabolismo , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN Viral/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa Pancreática/metabolismo , Proteínas Virales/fisiología , Replicación Viral/genética
11.
J Virol ; 86(1): 156-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013057

RESUMEN

In addition to its central role as a template for replication and translation, the viral plus-strand RNA genome also has nontemplate functions, such as recruitment to the site of replication and assembly of the viral replicase, activities that are mediated by cis-acting RNA elements within viral genomes. Two noncontiguous RNA elements, RII(+)-SL (located internally in the tombusvirus genome) and RIV (located at the 3'-terminus), are involved in template recruitment into replication and replicase assembly; however, the importance of each of these RNA elements for these two distinct functions is not fully elucidated. We used an in vitro replicase assembly assay based on yeast cell extract and purified recombinant tombusvirus replication proteins to show that RII(+)-SL, in addition to its known requirement for recruitment of the plus-strand RNA into replication, is also necessary for assembly of an active viral replicase complex. Additional studies using a novel two-component RNA system revealed that the recruitment function of RII(+)-SL can be provided in trans by a separate RNA and that the replication silencer element, located within RIV, defines the template that is used for initiation of minus-strand synthesis. Collectively, this work has revealed new functions for tombusvirus cis-acting RNA elements and provided insights into the pioneering round of minus-strand synthesis.


Asunto(s)
Regulación Viral de la Expresión Génica , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Elementos Silenciadores Transcripcionales , Tombusvirus/enzimología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Bases , Genoma Viral , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , Tombusvirus/química , Tombusvirus/genética , Tombusvirus/fisiología , Proteínas Virales/química , Replicación Viral
12.
PLoS Pathog ; 6(11): e1001175, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079685

RESUMEN

Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Saccharomyces cerevisiae/virología , Tombusvirus/patogenicidad , Replicación Viral , Ensayo de Cambio de Movilidad Electroforética , Factor 1 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 1 Eucariótico de Iniciación/genética , Mutagénesis , Mutación/genética , Conformación Proteica , ARN Viral/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
13.
PLoS Pathog ; 5(3): e1000323, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19266082

RESUMEN

Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.


Asunto(s)
Genoma Viral , ARN Viral/química , Tombusvirus/genética , Tombusvirus/fisiología , Replicación Viral , Regulación Viral de la Expresión Génica , Modelos Biológicos , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(50): 19956-61, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19060219

RESUMEN

To gain insights into the functions of a viral RNA replicase, we have assembled in vitro and entirely from nonplant sources, a fully functional replicase complex of Tomato bushy stunt virus (TBSV). The formation of the TBSV replicase required two purified recombinant TBSV replication proteins, which were obtained from E. coli, the viral RNA replicon, rATP, rGTP, and a yeast cell-free extract. The in vitro assembly of the replicase took place in the membraneous fraction of the yeast extract, in which the viral replicase-RNA complex became RNase- and proteinase-resistant. The assembly of the replicase complex required the heat shock protein 70 (Hsp70 = yeast Ssa1/2p) present in the soluble fraction of the yeast cell-free extract. The assembled TBSV replicase performed a complete replication cycle, synthesizing RNA complementary to the provided RNA replicon and using the complementary RNA as template to synthesize new TBSV replicon RNA.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Tombusvirus/enzimología , Proteínas Virales/metabolismo , Adenosina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Interacciones Huésped-Patógeno , Mutación , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Tombusvirus/fisiología , Replicación Viral
15.
Virology ; 563: 1-19, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34399236

RESUMEN

To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Tombusvirus/fisiología , Replicación Viral/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzotiazoles/farmacología , Regulación de la Expresión Génica de las Plantas/inmunología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Regulación Viral de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Compuestos de Piridinio/farmacología , ARN Viral/fisiología , Nicotiana/metabolismo , Nicotiana/virología , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
16.
J Virol ; 82(12): 5967-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18417594

RESUMEN

To study the replication of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we have developed a cell-free system based on a Saccharomyces cerevisiae extract. The cell-free system was capable of performing a complete replication cycle on added plus-stranded TBSV replicon RNA (repRNA) that led to the production of approximately 30-fold-more plus-stranded progeny RNAs than the minus-stranded replication intermediate. The cell-free system also replicated the full-length TBSV genomic RNA, which resulted in production of subgenomic RNAs as well. The cell-free system showed high template specificity, since a mutated repRNA, minus-stranded repRNA, or a heterologous viral RNA could not be used as templates by the tombusvirus replicase. Similar to the in vivo situation, replication of the TBSV replicon RNA took place in a membraneous fraction, in which the viral replicase-RNA complex was RNase and protease resistant but sensitive to detergents. In addition to faithfully replicating the TBSV replicon RNA, the cell-free system was also capable of generating TBSV RNA recombinants with high efficiency. Altogether, tombusvirus replicase in the cell-free system showed features remarkably similar to those of the in vivo replicase, including carrying out a complete cycle of replication, high template specificity, and the ability to recombine efficiently.


Asunto(s)
Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Tombusvirus/fisiología , Replicación Viral , Extractos Celulares/química , Sistema Libre de Células , Plásmidos/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética
17.
Methods Mol Biol ; 451: 55-68, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18370247

RESUMEN

Identification of the roles of replication factors represents one of the major frontiers in current virus research. Among plant viruses, the positive-stranded (+) RNA viruses are the largest group and the most widespread. The central step in the infection cycles of (+) RNA viruses is RNA replication, which leads to rapid production of huge number of viral (+) RNA progeny in the infected plant cells. The RNA replication process is carried out by the virus-specific replicase complex consisting of viral RNA-dependent RNA polymerase, one or more auxiliary viral replication proteins, and host factors, which assemble in specialized membranous compartments in infected cells. Replication is followed by cell-to-cell and long-distance movement to invade the entire plant and/or encapsidation to facilitate transmission to new plants. This chapter provides an overview of our current understanding of the role of viral replication proteins during genome replication. The recent significant progress in this research area is based on development of powerful in vivo and in vitro approaches, including replicase assays, reverse genetic approaches, intracelular localization studies and the use of plant or yeast model hosts.


Asunto(s)
Plantas/genética , ARN de Planta/genética , Proteínas Virales/genética , Replicación Viral/genética , Plantas/virología , Proteoma , ARN Mensajero/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
18.
Methods Mol Biol ; 451: 615-24, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18370284

RESUMEN

The central step in virus infection cycle is replication, which depends on viral and host factors. Model hosts, such as yeast, can be very valuable to identify host factors and study the functional interactions of host factors with viral proteins and/or the virus nucleic acids. The advantages of using yeast include the availability of (i) single gene-deletion library, (ii) the essential gene library (yTHC), (iii) the controllable small or large-scale expression of viral proteins and nucleic acids, and (iv) the rapid growth of yeast strains. Here, we describe procedures, which facilitate high-throughput analysis of tombusvirus replication in yeast.


Asunto(s)
Genoma Viral , Replicación Viral/genética , Electroforesis en Gel de Agar/métodos , Eliminación de Gen , Biblioteca de Genes , ARN Viral/genética , ARN Viral/aislamiento & purificación , Tombusviridae/genética
19.
Viruses ; 8(3): 68, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26950140

RESUMEN

Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.


Asunto(s)
Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Membranas/metabolismo , Membranas/virología , Tombusvirus/fisiología , Replicación Viral , Modelos Biológicos , Saccharomyces cerevisiae/virología
20.
Trends Microbiol ; 22(6): 309-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24647076

RESUMEN

The yeast Saccharomyces cerevisiae is an advanced model organism that has emerged as an effective host to gain insights into the intricate interactions of viruses with host cells. RNA viruses have limited coding potential and need to coopt numerous host cellular factors to facilitate their replication. To identify the host factors subverted by viruses, high-throughput genomics and global proteomics approaches have been performed with plant viruses such as brome mosaic virus (BMV) and tomato bushy stunt virus (TBSV). Accordingly, several hundred susceptibility and restriction factors for BMV and TBSV have been identified using yeast as a model host. Amazingly, host factors affecting viral genetic recombination and evolution have also been identified in genome-wide screens in yeast. The roles of many yeast host factors involved in various steps of the viral replication process have been validated by exploiting the orthologous genes in plant hosts. This Opinion summarizes the advantages of using simple viruses and yeast model host to advance our general understanding of virus-host interactions. The knowledge gained on host factors could lead to novel specific or broad-range resistance and antiviral tools against viruses.


Asunto(s)
Genómica , Interacciones Huésped-Patógeno/genética , Modelos Genéticos , Saccharomyces cerevisiae/virología , Biología Computacional , Genoma Fúngico , Saccharomyces cerevisiae/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA