Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Mutat ; 40(12): 2258-2269, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31237726

RESUMEN

The ACTN1 gene has been implicated in inherited macrothrombocytopenia. To decipher the spectrum of variants and phenotype of ACTN1-related thrombocytopenia, we sequenced the ACTN1 gene in 272 cases of unexplained chronic or familial thrombocytopenia. We identified 15 rare, monoallelic, nonsynonymous and likely pathogenic ACTN1 variants in 20 index cases from 20 unrelated families. Thirty-one family members exhibited thrombocytopenia. Targeted sequencing was carried out on 12 affected relatives, which confirmed presence of the variant. Twenty-eight of 32 cases with monoallelic ACTN1 variants had mild to no bleeding complications. Eleven cases harbored 11 different unreported ACTN1 variants that were monoallelic and likely pathogenic. Nine variants were located in the α-actinin-1 (ACTN1) rod domain and were predicted to hinder dimer formation. These variants displayed a smaller increase in platelet size compared with variants located outside the rod domain. In vitro expression of the new ACTN1 variants induced actin network disorganization and led to increased thickness of actin fibers. These findings expand the repertoire of ACTN1 variants associated with thrombocytopenia and highlight the high frequency of ACTN1-related thrombocytopenia cases. The rod domain, like other ACTN1 functional domains, may be mutated resulting in actin disorganization in vitro and thrombocytopenia with normal platelet size in most cases.


Asunto(s)
Actinina/química , Actinina/genética , Mutación , Análisis de Secuencia de ADN/métodos , Trombocitopenia/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Linaje , Dominios Proteicos , Adulto Joven
2.
J Cell Sci ; 129(11): 2273-84, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122188

RESUMEN

Glucose transporter GLUT4 (also known as SLC2A4) plays a major role in glucose homeostasis and is efficiently retained intracellularly in adipocytes and myocytes. To simplify the analysis of its retention, here, various intracellular GLUT4 domains were fused individually to reporter molecules. Of the four short cytoplasmic loops of GLUT4, only the first nine-residue-long loop conferred intracellular retention of truncated forms of the transferrin receptor and CD4 in adipocytes. In contrast, the same loop of GLUT1 was without effect. The reporter molecules to which the first loop of GLUT4 was fused localized, unlike GLUT4, to the trans-Golgi network (TGN), possibly explaining why these molecules did not respond to insulin. The retention induced by the GLUT4 loop was specific to adipocytes as it did not induce retention in preadipocytes. Of the SQWLGRKRA sequence that constitutes this loop, mutation of either the tryptophan or lysine residue abrogated reporter retention. Mutation of these residues individually into alanine residues in the full-length GLUT4 molecule resulted in a decreased retention for GLUT4-W105A. We conclude that the first intracellular loop of GLUT4 contains the retention motif WLGRK, in which W105 plays a prominent role.


Asunto(s)
Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos CD4/metabolismo , Análisis Mutacional de ADN , Genes Reporteros , Insulina/farmacología , Espacio Intracelular/metabolismo , Ratones , Mutación/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
3.
Haematologica ; 102(6): 1006-1016, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255014

RESUMEN

Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers' platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers' platelets, presumably due to a biogenesis defect. Additionally, 25-29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7-9%) and autophagosome-like structures (0-3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Trombocitopenia/etiología , Adulto , Plaquetas/patología , Plaquetas/ultraestructura , Núcleo Celular/química , Variación Genética , Humanos , Masculino , Megacariocitos/patología , Persona de Mediana Edad , Agregación Plaquetaria/genética , Proteína Proto-Oncogénica c-fli-1/genética , Trombocitopenia/congénito , Transcripción Genética , Adulto Joven
4.
Haematologica ; 102(2): 282-294, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27663637

RESUMEN

Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.


Asunto(s)
Plaquetas/metabolismo , Mutación de Línea Germinal , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombopoyesis/genética , Antígenos CD34/metabolismo , Recuento de Células Sanguíneas , Diferenciación Celular , Familia , Femenino , Regulación de la Expresión Génica , Genotipo , Humanos , Hiperplasia , Masculino , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/patología , Linaje , Fenotipo , Recuento de Plaquetas , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteína ETS de Variante de Translocación 6
5.
Proc Natl Acad Sci U S A ; 111(7): 2686-91, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24492375

RESUMEN

The immune system plays an instrumental role in obesity and insulin resistance. Here, we unravel the role of the costimulatory molecule CD40 and its signaling intermediates, TNF receptor-associated factors (TRAFs), in diet-induced obesity (DIO). Although not exhibiting increased weight gain, male CD40(-/-) mice in DIO displayed worsened insulin resistance, compared with wild-type mice. This worsening was associated with excessive inflammation of adipose tissue (AT), characterized by increased accumulation of CD8(+) T cells and M1 macrophages, and enhanced hepatosteatosis. Mice with deficient CD40-TRAF2/3/5 signaling in MHCII(+) cells exhibited a similar phenotype in DIO as CD40(-/-) mice. In contrast, mice with deficient CD40-TRAF6 signaling in MHCII(+) cells displayed no insulin resistance and showed a reduction in both AT inflammation and hepatosteatosis in DIO. To prove the therapeutic potential of inhibition of CD40-TRAF6 in obesity, DIO mice were treated with a small-molecule inhibitor that we designed to specifically block CD40-TRAF6 interactions; this compound improved insulin sensitivity, reduced AT inflammation, and decreased hepatosteatosis. Our study reveals that the CD40-TRAF2/3/5 signaling pathway in MHCII(+) cells protects against AT inflammation and metabolic complications associated with obesity whereas CD40-TRAF6 interactions in MHCII(+) cells aggravate these complications. Inhibition of CD40-TRAF6 signaling by our compound may provide a therapeutic option in obesity-associated insulin resistance.


Asunto(s)
Antígenos CD40/metabolismo , Resistencia a la Insulina/inmunología , Obesidad/inmunología , Transducción de Señal/inmunología , Factor 6 Asociado a Receptor de TNF/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Análisis de Varianza , Animales , Compuestos Azo , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/genética , Linfocitos T CD8-positivos/inmunología , Calorimetría , Hígado Graso/etiología , Hígado Graso/patología , Citometría de Flujo , Ligandos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Resonancia por Plasmón de Superficie , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores
6.
J Biol Chem ; 290(5): 2812-21, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25527501

RESUMEN

Gaining the full activity of the insulin receptor (IR) requires the proteolytic cleavage of its proform by intra-Golgi furin-like activity. In mammalian cells, IR is expressed as two isoforms (IRB and IRA) that are responsible for insulin action. However, only IRA transmits the growth-promoting and mitogenic effects of insulin-like growth factor 2. Here we demonstrate that the two IR isoforms are similarly cleaved by furin, but when this furin-dependent maturation is inefficient, IR proforms move to the cell surface where the proprotein convertase PACE4 selectively supports IRB maturation. Therefore, in situations of impaired furin activity, the proteolytic maturation of IRB is greater than that of IRA, and accordingly, the amount of phosphorylated IRB is also greater than that of IRA. We highlight the ability of a particular proprotein convertase inhibitor to effectively reduce the maturation of IRA and its associated mitogenic signaling without altering the signals emanating from IRB. In conclusion, the selective PACE4-dependent maturation of IRB occurs when furin activity is reduced; accordingly, the pharmacological inhibition of furin reduces IRA maturation and its mitogenic potential without altering the insulin effects.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/metabolismo , Proproteína Convertasas/metabolismo , Receptor de Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Células 3T3-L1 , Animales , Proliferación Celular , Furina/genética , Furina/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Ratones , Proproteína Convertasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Insulina/genética , Serina Endopeptidasas/genética
7.
Biochim Biophys Acta ; 1833(3): 602-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23159491

RESUMEN

The pleiotropic pro-inflammatory cytokine tumour necrosis factor alpha (TNF) is synthesised as a transmembrane protein that is subject to palmitoylation. In this study, the roles of this acylation on TNF-mediated biological effects were investigated. We found that the lipid raft partitioning of TNF is regulated by its palmitoylation. Furthermore, we demonstrated that this palmitoylation process interferes with the cleavage/degradation of TNF intracellular fragments but is not involved in the regulation of its ectodomain shedding. Moreover, we found that the palmitoylation of TNF hinders the binding of soluble TNF to TNFR1 and regulates the integration/retention of TNFR1 into lipid rafts. Finally, we demonstrate that the transmembrane forms of wild-type and palmitoylation-defective TNF interact differently with TNFR1 and regulate NFκB activity, Erk1/2 phosphorylation and interleukin-6 synthesis differently, strongly suggesting that palmitoylation of TNF is involved in the regulation of TNFR1 signalling. An evidence for the physiological intervention of this regulation is provided by the fact that, in macrophages, the binding of endogenous soluble TNF to TNFR1 is enhanced by inhibition of palmitoylation. Therefore, our data introduce the new concept that palmitoylation of TNF is one of the means by which TNF-producing cells regulate their sensitivity to soluble TNF.


Asunto(s)
Regulación de la Expresión Génica , Microdominios de Membrana/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Células 3T3-L1 , Animales , Western Blotting , Caspasa 8/genética , Caspasa 8/metabolismo , Células Cultivadas , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoilación , Luciferasas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Microdominios de Membrana/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/genética
9.
Circ Res ; 109(12): 1387-95, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22021930

RESUMEN

RATIONALE: Unlike conventional dendritic cells, plasmacytoid DCs (PDC) are poor in antigen presentation and critical for type I interferon response. Though proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive. OBJECTIVE: To investigate the role of PDC in atherosclerosis. METHODS AND RESULTS: We show that PDC are scarcely present in human atherosclerotic lesions and almost absent in mouse plaques. Surprisingly, PDC depletion by 120G8 mAb administration was seen to promote plaque T-cell accumulation and exacerbate lesion development and progression in LDLr⁻/⁻ mice. PDC depletion was accompanied by increased CD4⁺ T-cell proliferation, interferon-γ expression by splenic T cells, and plasma interferon-γ levels. Lymphoid tissue PDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the PDC suppressive effect on T-cell proliferation. CONCLUSIONS: Our data reveal a protective role for PDC in atherosclerosis, possibly by dampening T-cell proliferation and activity in peripheral lymphoid tissue, rendering PDC an interesting target for future therapeutic interventions.


Asunto(s)
Aterosclerosis/patología , Aterosclerosis/fisiopatología , Linfocitos T CD4-Positivos/patología , Proliferación Celular , Células Dendríticas/patología , Células Dendríticas/fisiología , Animales , Anticuerpos Monoclonales/farmacología , Aterosclerosis/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 32(10): 2394-404, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22859493

RESUMEN

OBJECTIVE: High endogenous thrombin potential (ETP) is associated with venous and arterial thrombosis. Better knowledge of environmental influences on ETP may help to prevent thrombosis. METHODS AND RESULTS: Weaning rats exhibited high ETP values that decreased in low-fat diet and remained elevated on high-fat diet. In adult rats, high-fat diet-induced ETP increase was independent of coagulation factors, obesity, and insulin resistance and negatively associated with polyunsaturated fatty acid levels. Switching from high-fat diet to low-fat diet reversed the procoagulant phenotype with a slower kinetic than the normalization of hyperinsulinemia. In humans, ETP was independent of body weight whereas it was negatively associated with nutritional markers such as the percentage of energy provided by proteins, the protein:fat ratio, circulating phenolic compounds, and omega-3 polyunsaturated fatty acid. A recommended 3-month healthy diet with reduced energy density, including lipids, decreased ETP (-21%; P<0.0001). Changes in ETP were not associated with body weight, insulin sensitivity, or coagulation factor variations, but correlated negatively with plasma docosahexaenoic acid, a nutritional status sensitive fatty acid, and compounds reflecting vegetable intake. CONCLUSIONS: Diet plays a pivotal role in regulating ETP, independently of obesity and insulin resistance. Global nutritional recommendations could be useful in primary prevention of venous thrombosis.


Asunto(s)
Dieta con Restricción de Grasas , Dieta Alta en Grasa , Estado Nutricional , Trombina/metabolismo , Trombosis/epidemiología , Trombosis/metabolismo , Animales , Coagulación Sanguínea/fisiología , Ácidos Grasos Omega-3/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Persona de Mediana Edad , Modelos Animales , Obesidad/fisiopatología , Fenoles/metabolismo , Ratas , Ratas Wistar , Factores de Riesgo , Trombosis/fisiopatología , Factores de Tiempo
11.
Semin Immunol ; 21(5): 308-12, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19616449

RESUMEN

Atherosclerosis is a chronic disease of the large arteries that is responsible for the majority of cardiovascular events. In its pathogenesis, the immune system plays a pivotal role. The effectuation of the immune response through interactions between immune cells that is mediated by co-stimulatory molecules, determine atherosclerosis severity. This review will highlight the role of one of the most powerful co-stimulatory dyads, the CD154 (also known as CD40 ligand, CD40L)-CD40 dyad, in atherosclerosis. Its cell-type specific actions, signal transduction cascades and its therapeutic potentials will be discussed.


Asunto(s)
Aterosclerosis/inmunología , Antígenos CD40/inmunología , Ligando de CD40/inmunología , Transducción de Señal/inmunología , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Humanos
12.
J Thromb Haemost ; 21(9): 2528-2544, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37085035

RESUMEN

BACKGROUND: Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES: To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS: Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS: Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION: These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.


Asunto(s)
Megacariocitos , Trombocitopenia , Humanos , Diferenciación Celular , Megacariocitos/metabolismo , Proteína S6 Ribosómica/metabolismo , Análisis de la Célula Individual , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoyesis/genética , Antígenos CD34 , Proteína ETS de Variante de Translocación 6
13.
Arterioscler Thromb Vasc Biol ; 31(10): 2251-60, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21817098

RESUMEN

OBJECTIVE: Obese adipose tissue shows hallmarks of chronic inflammation, which promotes the development of metabolic disorders. The mechanisms by which immune cells interact with each other or with metabolism-associated cell types, and the players involved, are still unclear. The CD40-CD40L costimulatory dyad plays a pivotal role in immune responses and in diseases such as atherosclerosis and may therefore be a mediator of obesity. Here we investigated whether CD40L is involved in adipose tissue inflammation and its associated metabolic changes. METHODS AND RESULTS: To assess a putative role of CD40L in obesity in vivo, we evaluated metabolic and inflammatory consequences of 18 weeks of high-fat feeding in CD40L(+/+) and CD40L(-/-) mice. In addition, C57Bl6 mice were injected with neutralizing anti-CD40L (αCD40L) antibody for 12 weeks while being fed a high-fat diet. Genetic deficiency of CD40L attenuated the development of diet-induced obesity, hepatic steatosis, and increased systemic insulin sensitivity. In adipose tissue, it impaired obesity-induced immune cell infiltration and the associated deterioration of glucose and lipid metabolism. Accordingly, αCD40L treatment improved systemic insulin sensitivity, glucose tolerance, and CD4(+) T-cell infiltration in adipose tissue with limited effects on adipose tissue weight. CONCLUSIONS: CD40L plays a crucial role in the development of obesity-induced inflammation and metabolic complications.


Asunto(s)
Tejido Adiposo/inmunología , Ligando de CD40/deficiencia , Hígado Graso/prevención & control , Resistencia a la Insulina , Obesidad/prevención & control , Paniculitis/prevención & control , Tejido Adiposo/metabolismo , Animales , Anticuerpos Neutralizantes/administración & dosificación , Glucemia/metabolismo , Linfocitos T CD4-Positivos/inmunología , Ligando de CD40/genética , Ligando de CD40/inmunología , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/inmunología , Hígado Graso/metabolismo , Mediadores de Inflamación/metabolismo , Insulina/sangre , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/genética , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/fisiopatología , Paniculitis/genética , Paniculitis/inmunología , Paniculitis/metabolismo , Factores de Tiempo , Aumento de Peso
14.
J Biol Chem ; 285(9): 6508-14, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20056610

RESUMEN

Matrix metalloproteinase activity is essential for proper extracellular matrix remodeling that takes place during adipose tissue formation. Four tissue inhibitors of matrix metalloproteinases (TIMPs) regulate their activity. However, the role of TIMPs in adipocyte differentiation is poorly understood. We found that the expression of all TIMPs was modified during adipocyte differentiation, but that of TIMP-3 was distinguished by its extreme down-regulation. TIMP-3 expression was closely linked to the differentiation process. Indeed, it remained low during the adipocyte differentiation but increased when cell differentiation was prevented. We identified the transcription factor Sp1 as being responsible for the regulation of TIMP-3 expression during adipocyte differentiation. Overexpression of TIMP-3 reduced adipocyte differentiation, underlining its active role in this process. TIMP-3 overexpression decreased the expression of the early and obligate key inductors of adipogenesis Krüppel-like factor 4 (Klf4), early growth response 2 (Egr2/Krox20), and CAAT/enhancer-binding protein beta (C/EBPbeta). Our results indicate that during preadipocyte differentiation, the Sp1-dependent decrease in TIMP-3 expression is required for the successful implementation of the adipocyte differentiation program.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Regulación hacia Abajo/genética , Factor de Transcripción Sp1/fisiología , Inhibidor Tisular de Metaloproteinasa-3/genética , Células 3T3-L1 , Adipogénesis/genética , Animales , Humanos , Factor 4 Similar a Kruppel , Ratones
15.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060193

RESUMEN

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Asunto(s)
Factor de Transcripción GATA1 , Megacariocitos , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Trombocitopenia , Plaquetas , Factor de Transcripción GATA1/genética , Silenciador del Gen , Humanos , Trombocitopenia/genética , Trombopoyesis/genética , Factores de Transcripción
16.
J Thromb Haemost ; 19(5): 1186-1199, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605529

RESUMEN

BACKGROUND: Coagulation factor V (FV), present in plasma and platelets, has both pro- and anticoagulant functions. OBJECTIVE: We investigated an FV-deficient patient (FV:C 3%, FV:Ag 4%) paradoxically presenting with recurrent venous thrombosis (11 events) instead of bleeding. METHODS/RESULTS: Thrombophilia screening revealed only heterozygosity for the F2 20210G>A mutation. Although thrombin generation in the patient's platelet-poor plasma was suggestive of a hypocoagulable state, thrombin generation in the patient's platelet-rich plasma (PRP) was higher than in control PRP and extremely resistant to activated protein C (APC). This was partially attributable to the complete abolition of the APC-cofactor activity of FV and a marked reduction of plasma tissue factor pathway inhibitor antigen and activity. The patient was homozygous for a novel missense mutation (Ala2086Asp, FVBesançon ) that favors a "closed conformation" of the C2 domain, predicting impaired binding of FV(a) to phospholipids. Recombinant FVBesançon was hardly secreted, indicating that this mutation is responsible for the patient's FV deficiency. Model system experiments performed using highly diluted plasma as a source of FV showed that, compared with normal FVa, FVaBesançon has slightly (≤1.5-fold) unfavorable kinetic parameters (Km , Vmax ) of prothrombin activation, but also a lower rate of APC-catalyzed inactivation in the presence of protein S. CONCLUSIONS: FVBesançon induces a hypercoagulable state via quantitative (markedly decreased FV level) and qualitative (phospholipid-binding defect) effects that affect anticoagulant pathways (anticoagulant activities of FV, FVa inactivation, tissue factor pathway inhibitor α level) more strongly than the prothrombinase activity of FVa. A possible specific role of platelet FV cannot be excluded.


Asunto(s)
Factor V , Trombofilia , Pruebas de Coagulación Sanguínea , Factor V/genética , Homocigoto , Humanos , Mutación , Trombofilia/genética
17.
J Thromb Haemost ; 18(3): 693-705, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758832

RESUMEN

BACKGROUND: The small GTPase Rap1 and its guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), are critical for platelet function and hemostatic plug formation. CDGI function is regulated by a calcium binding EF hand regulatory domain and an atypical C1 domain with unknown function. OBJECTIVE: Here, we investigated whether the C1 domain controls CDGI subcellular localization, both in vitro and in vivo. METHODS: CDGI interaction with phosphoinositides was studied by lipid co-sedimentation assays and molecular dynamics simulations. Cellular localization of CDGI was studied in heterologous cells by immunofluorescence and subcellular fractionation assays. RESULTS: Lipid co-sedimentation studies demonstrated that the CDGI C1 domain associates with membranes through exclusive recognition of phosphoinositides, phosphatidylinositol (4,5)-biphosphate (PIP2) and phosphatidylinositol (3,4,5)-triphosphate (PIP3). Molecular dynamics simulations identified a phospholipid recognition motif consisting of residues exclusive to the CDGI C1 domain. Mutation of those residues abolished co-sedimentation of the C1 domain with lipid vesicles and impaired membrane localization of CDGI in heterologous cells. CONCLUSION: Our studies identify a novel interaction between an atypical C1 domain and phosphatidylinositol (4,5)-biphosphate and phosphatidylinositol (3,4,5)-triphosphate in cellular membranes, which is critical for Rap1 signaling in health and disease.


Asunto(s)
Activadores de GTP Fosfohidrolasa , Fosfatidilinositoles , GTP Fosfohidrolasas , Factores de Intercambio de Guanina Nucleótido , Transducción de Señal
18.
Res Pract Thromb Haemost ; 3(4): 684-694, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31624788

RESUMEN

Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.

19.
Sci Rep ; 9(1): 9631, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270351

RESUMEN

Increased platelet activity occurs in type 2 diabetes mellitus (T2DM) and such platelet dysregulation likely originates from altered megakaryopoiesis. We initiated identification of dysregulated pathways in megakaryocytes in the setting of T2DM. We evaluated through transcriptomic analysis, differential gene expressions in megakaryocytes from leptin receptor-deficient mice (db/db), exhibiting features of human T2DM, and control mice (db/+). Functional gene analysis revealed an upregulation of transcripts related to calcium signaling, coagulation cascade and platelet receptors in diabetic mouse megakaryocytes. We also evidenced an upregulation (7- to 9.7-fold) of genes encoding stefin A (StfA), the human ortholog of Cystatin A (CSTA), inhibitor of cathepsin B, H and L. StfA/CSTA was present in megakaryocytes and platelets and its expression increased during obesity and diabetes in rats and humans. StfA/CSTA was primarily localized at platelet membranes and granules and was released upon agonist stimulation and clot formation through a metalloprotease-dependent mechanism. StfA/CSTA did not affect platelet aggregation, but reduced platelet accumulation on immobilized collagen from flowing whole blood (1200 s-1). In-vivo, upon laser-induced vascular injury, platelet recruitment and thrombus formation were markedly reduced in StfA1-overexpressing mice without affecting bleeding time. The presence of CA-074Me, a cathepsin B specific inhibitor significantly reduced thrombus formation in-vitro and in-vivo in human and mouse, respectively. Our study identifies StfA/CSTA as a key contributor of platelet-dependent thrombus formation in both rodents and humans.


Asunto(s)
Plaquetas/enzimología , Cistatina A/metabolismo , Diabetes Mellitus Experimental/complicaciones , Megacariocitos/enzimología , Trombosis/prevención & control , Animales , Señalización del Calcio , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria , Agregación Plaquetaria , Ratas , Ratas Wistar , Trombosis/etiología , Trombosis/metabolismo , Trombosis/patología
20.
J Cell Physiol ; 214(3): 687-93, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17786981

RESUMEN

The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease that cleaves several transmembrane proteins, including TNF and its receptors (TNFR1 and TNFR2). We recently showed that the shedding activity of ADAM17 is sequestered in lipid rafts and that cholesterol depletion increased the shedding of ADAM17 substrates. These data suggested that ADAM17 activity could be regulated by cholesterol movements in the cell membrane. We investigated if the membrane cholesterol efflux induced by high-density lipoproteins (HDLs) was able to modify the shedding of ADAM17 substrates. HDLs added to different cell types, increased the ectodomain shedding of TNFR2, TNFR1, and TNF, an effect reduced by inhibitors active on ADAM17. The HDLs-stimulated TNF release occurred also on cell-free isolated plasma membranes. Purified apoA1 increased the shedding of TNF in an ABCA1-dependent manner, suggesting a role for the cholesterol efflux in this phenomenon. HDLs reduced the cholesterol and proteins (including ADAM17) content of lipid rafts and triggered the ADAM17-dependent cleavage of TNF in the non-raft region of the membrane. In conclusion, these data demonstrate that HDLs alter the lipid raft structure, which in turn activates the ADAM17-dependent processing of transmembrane substrates.


Asunto(s)
Proteínas ADAM/metabolismo , Lipoproteínas HDL/farmacología , Proteína ADAM17 , Animales , Células COS , Chlorocebus aethiops , Colesterol/farmacología , Humanos , Microdominios de Membrana/efectos de los fármacos , Ratas , Receptores del Factor de Necrosis Tumoral/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA