RESUMEN
BACKGROUND: Characterizing the kinetics of the antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of critical importance to developing strategies that may mitigate the public health burden of coronavirus disease 2019 (COVID-19). We conducted a prospective, longitudinal analysis of COVID-19 convalescent plasma donors at multiple time points over an 11-month period to determine how circulating antibody levels change over time following natural infection. METHODS: From April 2020 to February 2021, we enrolled 228 donors. At each study visit, subjects either donated plasma or had study samples drawn only. Anti-SARS-CoV-2 donor testing was performed using the VITROS Anti-SARS-CoV-2 Total and IgG assays and an in-house fluorescence reduction neutralization assay. RESULTS: Anti-SARS-CoV-2 antibodies were identified in 97% of COVID-19 convalescent donors at initial presentation. In follow-up analyses, of 116 donors presenting at repeat time points, 91.4% had detectable IgG levels up to 11 months after symptom recovery, while 63% had detectable neutralizing titers; however, 25% of donors had neutralizing levels that dropped to an undetectable titer over time. CONCLUSIONS: Our data suggest that immunological memory is acquired in most individuals infected with SARS-CoV-2 and is sustained in a majority of patients for up to 11 months after recovery. Clinical Trials Registration. NCT04360278.
Asunto(s)
Inmunidad Adaptativa , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/virología , Convalecencia , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo , Adulto JovenRESUMEN
Immunological memory is characterized by heightened immunoglobulin (Ig) G antibody production caused in part by enhanced plasma cell formation conferred by conserved transmembrane and cytoplasmic segments in isotype-switched IgG B cell receptors. We tested the hypothesis that the IgG tail enhances intracellular B cell antigen receptor (BCR) signaling responses to antigen by analyzing B cells from Ig transgenic mice with IgM receptors or chimeric IgMG receptors containing the IgG tail segment. The IgG tail segment enhanced intracellular calcium responses but not tyrosine or extracellular signal-related kinase (ERK) phosphorylation. Biochemical analysis and crosses to CD22-deficient mice established that IgG tail enhancement of calcium and antibody responses, as well as marginal zone B cell formation, was not due to diminished CD22 phosphorylation or inhibitory function. Microarray profiling showed no evidence for enhanced signaling by the IgG tail for calcium/calcineurin, ERK, or nuclear factor kappaB response genes and little evidence for any enhanced gene induction. Instead, almost half of the antigen-induced gene response in IgM B cells was diminished 50-90% by the IgG tail segment. These findings suggest a novel "less-is-more" hypothesis to explain how switching to IgG enhances B cell memory responses, whereby decreased BCR signaling to genes that oppose marginal zone and plasma cell differentiation enhances the formation of these key cell types.
Asunto(s)
Secuencia Conservada , Memoria Inmunológica/inmunología , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de IgG/química , Receptores de IgG/metabolismo , Transducción de Señal , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Calcio/metabolismo , Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunoglobulina M/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotirosina/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de IgG/genética , Receptores de IgG/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal/inmunología , Activación TranscripcionalRESUMEN
BACKGROUND: Characterizing the kinetics of the antibody response to SARSâ¡CoVâ¡2 is of critical importance to developing strategies that may mitigate the public health burden of COVID-19. We sought to determine how circulating antibody levels change over time following natural infection. METHODS/MATERIALS: We conducted a prospective, longitudinal analysis of COVID-19 convalescent plasma (CCP) donors at multiple time points over a 9-month period. At each study visit, subjects either donated plasma or only had study samples drawn. In all cases, anti-SARS-CoV-2 donor testing was performed using semi-quantitative chemiluminescent immunoassays (ChLIA) targeting subunit 1 (S1) of the SARS-CoV-2 spike (S) protein, and an in-house fluorescence reduction neutralization assay (FRNA). RESULTS: From April to November 2020 we enrolled 202 donors, mean age 47.3 ±14.7 years, 55% female, 75% Caucasian. Most donors reported a mild clinical course (91%, n=171) without hospitalization. One hundred and five (105) (52%) donors presented for repeat visits with a median 42 (12-163) days between visits. The final visit occurred at a median 160 (53-273) days post-symptom resolution. Total anti-SARS-CoV-2 antibodies (Ab), SARS-CoV-2 specific IgG and neutralizing antibodies were detected in 97.5%, 91.1%, and 74% of donors respectively at initial presentation. Neutralizing Ab titers based on FRNA 50 were positively associated with mean IgG levels (p = <0.0001). Mean IgG levels and neutralizing titers were positively associated with COVID-19 severity, increased donor age and BMI (p=0.0006 and p=0.0028, p=0.0083 and p=0.0363, (p=0.0008 and p=0.0018, respectively). Over the course of repeat visits, IgG decreased in 74.1% of donors; FRNA 50 decreased in 44.4% and remained unchanged in 33.3% of repeat donors. A weak negative correlation was observed between total Ab levels and number of days post-symptom recovery (r = 0.09). CONCLUSION: Anti-SARS-CoV-2 antibodies were identified in 97% of convalescent donors at initial presentation. In a cohort that largely did not require hospitalization. IgG and neutralizing antibodies were positively correlated with age, BMI and clinical severity, and persisted for up to 9 months post-recovery from natural infection. On repeat presentation, IgG anti-SARS-CoV-2 levels decreased in 56% of repeat donors. Overall, these data suggest that CP donors possess a wide range of IgG and neutralizing antibody levels that are proportionally distributed across demographics, with the exception of age, BMI and clinical severity.
RESUMEN
The amount of beef produced per animal in Canada increased significantly from 1981 to 2011, due to enhanced production efficiency and increased carcass weight. This study examined the impact of improvements in production efficiency on water use intensity over this period. Temporal and regional differences in cattle categories, water use for drinking, feed production and meat processing, feeding systems, average daily gains, and carcass weight were considered in the analysis. Potential evapotranspiration (PET) was estimated by the National Drought Model (NDM) from 679 weather stations across Canada using the Priestley and Taylor equation. To adjust PET estimates for each crop included in cattle diets, FAO crop coefficients were used to calculate total feed water demand. Estimates of drinking water consumed by a given class of cattle accounted for physiological status, body weight and dry matter intake as well as ambient temperature. In both years, drinking water accounted for less than 1% of total water use with precipitation (i.e., green water) included for feed and pasture production. With exclusion of green water, drinking water accounted for 24% and 21% of total water use for Canadian beef production in 1981 and 2011, respectively. The estimated intensity of blue water (surface and groundwater) use per kilogram of boneless beef was 577L in 1981 and 459 in 2011, a 20% decline. The observed reduction in water use intensity over the past three decades is attributed to an increase in average daily gain and slaughter weight, improved reproductive efficiency, reduced time to slaughter as well as improvements in crop yields and irrigation efficiency. Given that feed production accounts for the majority of water use in beef production, further advances may be achieved by improving feeding efficiencies and reducing water use per unit of feed crop and pasture production.
Asunto(s)
Crianza de Animales Domésticos/estadística & datos numéricos , Carne Roja , Abastecimiento de Agua/estadística & datos numéricos , Crianza de Animales Domésticos/métodos , Animales , Canadá , BovinosRESUMEN
The beef sector is working towards continually improving its sustainability in order to achieve environmentally, socially and economically desirable outcomes, all of which are of increasing concern to consumers. In this context, the Global Roundtable for Sustainable Beef (GRSB) provides guidance to advance the sustainability of the beef industry, through increased stakeholder engagement and the formation of national roundtables. Recently, the 2nd Global Conference on Sustainable Beef took place in Banff, Alberta, Canada, hosted by the GRSB and the Canadian Roundtable for Sustainable Beef. Conference attendees discussed the various initiatives that are being developed to address aspects of beef sustainability. This paper reviews the main discussions that occurred during this event, along with the key lessons learned, messages, and strategies that were proposed to improve the sustainability of the global beef industry.
RESUMEN
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity.
Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Interferón-alfa/farmacología , Mieloma Múltiple/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Humanos , Interferón-alfa/uso terapéutico , Macaca fascicularis , Mieloma Múltiple/tratamiento farmacológico , Mutación/genética , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Type I interferons (IFNs) are potent regulators of both innate and adaptive immunity. All type I IFNs bind to the same heterodimeric cell surface receptor composed of IFN-alpha receptor (IFNAR-1) and IFN-alpha/beta receptor (IFNAR-2) polypeptides. This study revealed that type I IFN receptor levels vary considerably on hematopoietic cells, with monocytes and B cells expressing the highest levels. Overnight treatment of peripheral blood mononuclear cells (PBMCs) with IFN-alpha2b or IFN-beta led to increased expression on monocytes and B cells of surface markers commonly associated with activated antigen-presenting cells (APCs), such as CD38, CD86, MHC class I, and MHC class II. Five-day exposure of adherent monocytes to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus IFN-alpha or IFN-beta caused the development of potent allostimulatory cells with morphology similar to that of myeloid dendritic cells (DCs) obtained from culture with GM-CSF and interleukin-4 (IL-4) but with distinct cell surface marker profiles and activity. In contrast to IL-4-derived DCs, IFN-alpha-derived DCs were CD14+, CD1a-, CD123+, CD32+, and CD38+ and expressed high levels of CD86 and MHC class II. Development of these cells was completely blocked by an antibody to IFNAR-1. Furthermore, activity of the type I IFN-derived DC in a mixed lymphocyte reaction (MLR) was consistently more potent than that of IL-4-derived DCs, especially at high responder/stimulator ratios. This MLR activity was abrogated by the addition of anti-IFNAR-1 antibody at the start of the DC culture. In contrast, there was no effect of anti-IFNAR-1 on IL-4-derived DCs, indicating that this is a distinct pathway of DC differentiation. These results suggest a potential role for anti-IFNAR-1 immunotherapy in autoimmune diseases, such as systemic lupus erythematosus (SLE), in which the action of excessive type I IFN on B cells and myeloid DCs may play a role in disease pathology.