Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(11): e23229, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37795915

RESUMEN

Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2. Interestingly, we observed that while TgCerS1 was a fully functional orthologue of the yeast ceramide synthase (Lag1p) capable of catalyzing the conversion of sphinganine to ceramide, in contrast TgCerS2 was catalytically inactive. Furthermore, genomic deletion of TgCerS1 using CRISPR/Cas-9 led to viable but slow-growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of TgCerS2 was only accessible utilizing the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this "pseudo" ceramide synthase, TgCerS2, has a considerably greater role in parasite fitness than its catalytically active orthologue (TgCerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa may have arisen through gene duplication. However, in the Apicomplexa the duplicated copy is hypothesized to have subsequently evolved into a non-functional "pseudo" ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Toxoplasma/genética , Duplicación de Gen , Filogenia , Esfingolípidos , Ceramidas/genética , Proteínas Protozoarias/genética
2.
J Biol Chem ; 298(5): 101919, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35405098

RESUMEN

The Candidate Phyla Radiation is a recently uncovered and vast expansion of the bacterial domain of life, made up of largely uncharacterized phyla that lack isolated representatives. This unexplored territory of genetic diversity presents an abundance of novel proteins with potential applications in the life-science sectors. Here, we present the structural and functional elucidation of CPR-C4, a hypothetical protein from the genome of a thermophilic Candidate Phyla Radiation organism, identified through metagenomic sequencing. Our analyses revealed that CPR-C4 is a member of a family of highly conserved proteins within the Candidate Phyla Radiation. The function of CPR-C4 as a cysteine protease was predicted through remote structural similarity to the Homo sapiens vasohibins and subsequently confirmed experimentally with fluorescence-based activity assays. Furthermore, detailed structural and sequence alignment analysis enabled identification of a noncanonical cysteine-histidine-leucine(carbonyl) catalytic triad. The unexpected structural and functional similarities between CPR-C4 and the human vasohibins suggest an evolutionary relationship undetectable at the sequence level alone.


Asunto(s)
Bacterias , Péptido Hidrolasas , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Secuencia Conservada , Humanos , Metagenoma , Metagenómica , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Filogenia , Estructura Terciaria de Proteína
3.
PLoS Pathog ; 15(4): e1007512, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947298

RESUMEN

The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.


Asunto(s)
Dinaminas/metabolismo , Fibroblastos/metabolismo , Dinámicas Mitocondriales , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Células Cultivadas , Dinaminas/genética , Fibroblastos/citología , Fibroblastos/parasitología , Humanos , Proteínas Protozoarias/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología
4.
Org Biomol Chem ; 19(42): 9211-9222, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34643629

RESUMEN

The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione-S-transferase (AmGSTF1) as a functional biomarker of MHR in black-grass (Alopecurus myosuroides). This study provides further insights into the role of AmGSTF1 in MHR using a combination of chemical and structural biology. Crystal structures of wild-type AmGSTF1, together with two specifically designed variants that allowed the co-crystal structure determination with glutathione and a glutathione adduct of the AmGSTF1 inhibitor 4-chloro-7-nitro-benzofurazan (NBD-Cl) were obtained. These studies demonstrated that the inhibitory activity of NBD-Cl was associated with the occlusion of the active site and the impediment of substrate binding. A search for other selective inhibitors of AmGSTF1, using ligand-fishing experiments, identified a number of flavonoids as potential ligands. Subsequent experiments using black-grass extracts discovered a specific flavonoid as a natural ligand of the recombinant enzyme. A series of related synthetic flavonoids was prepared and their binding to AmGSTF1 was investigated showing a high affinity for derivatives bearing a O-5-decyl-α-carboxylate. Molecular modelling based on high-resolution crystal structures allowed a binding pose to be defined which explained flavonoid binding specificity. Crucially, high binding affinity was linked to a reversal of the herbicide resistance phenotype in MHR black-grass. Collectively, these results present a nature-inspired new lead for the development of herbicide synergists to counteract MHR in weeds.


Asunto(s)
Resistencia a los Herbicidas
5.
BMC Bioinformatics ; 21(Suppl 2): 85, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32164553

RESUMEN

BACKGROUND: In the field of protein engineering and biotechnology, the discovery and characterization of structural patterns is highly relevant as these patterns can give fundamental insights into protein-ligand interaction and protein function. This paper presents GSP4PDB, a bioinformatics web tool that enables the user to visualize, search and explore protein-ligand structural patterns within the entire Protein Data Bank. RESULTS: We introduce the notion of graph-based structural pattern (GSP) as an abstract model for representing protein-ligand interactions. A GSP is a graph where the nodes represent entities of the protein-ligand complex (amino acids and ligands) and the edges represent structural relationships (e.g. distances ligand - amino acid). The novel feature of GSP4PDB is a simple and intuitive graphical interface where the user can "draw" a GSP and execute its search in a relational database containing the structural data of each PDB entry. The results of the search are displayed using the same graph-based representation of the pattern. The user can further explore and analyse the results using a wide range of filters, or download their related information for external post-processing and analysis. CONCLUSIONS: GSP4PDB is a user-friendly and efficient application to search and discover new patterns of protein-ligand interaction.


Asunto(s)
Ligandos , Proteínas/metabolismo , Interfaz Usuario-Computador , Animales , Bases de Datos de Proteínas , Humanos , Enlace de Hidrógeno , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Dedos de Zinc
6.
Immunology ; 157(2): 173-184, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31013364

RESUMEN

Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.


Asunto(s)
Adhesión Celular/inmunología , Movimiento Celular/inmunología , Células Endoteliales/inmunología , Interleucina-8/inmunología , Neutrófilos/inmunología , Células Endoteliales/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Neutrófilos/patología , Péptidos/inmunología
7.
Nat Chem Biol ; 13(4): 409-414, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28166209

RESUMEN

The metal affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II) sensor InrS and then created cyanobacteria (Synechocystis PCC 6803) in which transcription of genes encoding a Ni(II) exporter and a Ni(II) importer were controlled by InrS variants with weaker Ni(II) affinities. Variant strains were sensitive to elevated nickel and contained more nickel, but the increase was small compared with the change in Ni(II) affinity. All of the variant sensors retained the allosteric mechanism that inhibits DNA binding following metal binding, but a response to nickel in vivo was observed only when the sensitivity was set to respond in a relatively narrow (less than two orders of magnitude) range of nickel concentrations. Thus, the Ni(II) affinity of InrS is attuned to cellular metal concentrations rather than the converse.


Asunto(s)
Níquel/análisis , Níquel/química , Proteínas Represoras/química , Tampones (Química) , Modelos Moleculares , Níquel/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Synechocystis/metabolismo
8.
J Biol Chem ; 292(29): 12208-12219, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28578314

RESUMEN

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.


Asunto(s)
Retículo Endoplásmico/enzimología , Modelos Moleculares , Filogenia , Proteínas Protozoarias/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Biología Computacional , Secuencia Conservada , Dimerización , Eliminación de Gen , Duplicación de Gen , Transferencia de Gen Horizontal , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/aislamiento & purificación , Homología Estructural de Proteína
9.
Bioorg Med Chem ; 26(8): 1560-1572, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29439915

RESUMEN

Retinoids, such as all-trans-retinoic acid (ATRA), regulate cellular differentiation and signalling pathways in chordates by binding to nuclear retinoic acid receptors (RARα/ß/γ). Polar interactions between receptor and ligand are important for binding and facilitating the non-polar interactions and conformational changes necessary for RAR-mediated transcriptional regulation. The constraints on activity and RAR-type specificity with respect to the structural link between the polar and non-polar functions of synthetic retinoids are poorly understood. To address this, predictions from in silico ligand-RAR docking calculations and molecular dynamics simulations for a small library of stable, synthetic retinoids (designated GZ series) containing a central thiazole linker structure and different hydrophobic region substituents, were tested using a ligand binding assay and a range of cellular biological assays. The docking analysis showed that these thiazole-containing retinoids were well suited to the binding pocket of RARα, particularly via a favorable hydrogen bonding interaction between the thiazole and Ser232 of RARα. A bulky hydrophobic region (i.e., present in compounds GZ23 and GZ25) was important for interaction with the RAR binding pockets. Ligand binding assays generally reflected the findings from in silico docking, and showed that GZ25 was a particularly strongly binding ligand for RARα/ß. GZ25 also exhibited higher activity as an inducer of neuronal differentiation than ATRA and other GZ derivatives. These data demonstrate that GZ25 is a stable synthetic retinoid with improved activity which efficiently regulates neuronal differentiation and help to define the key structural requirements for retinoid activity enabling the design and development of the next generation of more active, selective synthetic retinoids as potential therapeutic regulators of neurogenesis.


Asunto(s)
Receptores de Ácido Retinoico/antagonistas & inhibidores , Retinoides/farmacología , Tiazoles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Receptores de Ácido Retinoico/metabolismo , Retinoides/química , Relación Estructura-Actividad , Tiazoles/química , Células Tumorales Cultivadas
10.
Parasitology ; 145(2): 210-218, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29191253

RESUMEN

The apicomplexan protozoan parasites include the causative agents of animal and human diseases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics. In this review, we will summarize structure-based strategies, recent successes and future directions in the pursuit of specific and selective inhibitors of T. gondii CDPK1.


Asunto(s)
Diseño de Fármacos , Proteínas Quinasas/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Animales , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Modelos Moleculares , Plasmodium/efectos de los fármacos , Proteínas Quinasas/química , Proteínas Protozoarias/metabolismo , Toxoplasmosis/parasitología
11.
J Biol Chem ; 291(37): 19502-16, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27474740

RESUMEN

The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmR(E64H) gains responsiveness to Zn(II) and cobalt in vivo Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro Sensitivity to formaldehyde requires a cysteine (Cys(35) in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmR(E64H) reveals that an FrmR-specific amino-terminal Pro(2) is proximal to Cys(35), and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmR(P2S) and RcnR(S2P), respectively, impair and enhance formaldehyde reactivity in vitro Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Formaldehído/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metales/metabolismo , Salmonella typhimurium/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Formaldehído/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella typhimurium/química , Salmonella typhimurium/genética
12.
J Comput Chem ; 38(7): 467-474, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28114729

RESUMEN

The electrostatic potential plays a key role in many biological processes like determining the affinity of a ligand to a given protein target, and they are responsible for the catalytic activity of many enzymes. Understanding the effect that amino acid mutations will have on the electrostatic potential of a protein, will allow a thorough understanding of which residues are the most important in a protein. MutantElec, is a friendly web application for in silico generation of site-directed mutagenesis of proteins and the comparison of electrostatic potential between the wild type protein and the mutant(s), based on the three-dimensional structure of the protein. The effect of the mutation is evaluated using different approach to the traditional surface map. MutantElec provides a graphical display of the results that allows the visualization of changes occurring at close distance from the mutation and thus uncovers the local and global impact of a specific change. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Simulación por Computador , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Electricidad Estática , Aminoácidos/química , Aminoácidos/genética , Ligandos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Interfaz Usuario-Computador
13.
Org Biomol Chem ; 15(48): 10245-10255, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29182187

RESUMEN

The transcriptional repressor EthR from Mycobacterium tuberculosis, a member of the TetR family of prokaryotic homo-dimeric transcription factors, controls the expression of the mycobacterial mono-oxygenase EthA. EthA is responsible for the bio-activation of the second-line tuberculosis pro-drug ethionamide, and consequently EthR inhibitors boost drug efficacy. Here, we present a comprehensive in silico structure-based screening protocol that led to the identification of a number of novel scaffolds of EthR inhibitors in subsequent biophysical screening by thermal shift assay. Growth inhibition assays demonstrated that five of the twenty biophysical hits were capable of boosting ethionamide activity in vitro, with the best novel scaffold displaying an EC50 of 34 µM. In addition, the co-crystal structures of EthR with four new ligands at resolution ranging from 2.1 to 1.4 Å confirm the binding and inactivation mode, and will enable future lead development.


Asunto(s)
Antituberculosos/uso terapéutico , Descubrimiento de Drogas , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Antituberculosos/síntesis química , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo
14.
J Biol Chem ; 290(36): 22225-35, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26187469

RESUMEN

Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring.


Asunto(s)
Proteína Receptora de AMP Cíclico/química , AMP Cíclico/química , Proteínas de Escherichia coli/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Entropía , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica
15.
PLoS Biol ; 11(9): e1001651, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24058293

RESUMEN

Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to occupy a dynamic space that fine-tunes biological activity and thus establishes the means to engineer allosteric mechanisms driven by low-frequency dynamics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Factores de Transcripción/metabolismo , Regulación Alostérica/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Sitios de Unión , Corynebacterium glutamicum/metabolismo , Cristalografía por Rayos X , Proteína Receptora de AMP Cíclico/ultraestructura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas Hierro-Azufre/ultraestructura , Modelos Moleculares , Unión Proteica/fisiología , Conformación Proteica , Termodinámica , Factores de Transcripción/química , Factores de Transcripción/clasificación
16.
J Org Chem ; 81(17): 7557-65, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27467234

RESUMEN

A convenient, mild and effective conjugate addition of 3-butyn-2-one to a variety of anilines in ethanol is reported. The reaction was monitored and characterized through in situ FTIR, and the dynamics of the facile E/Z alkene geometry interconversion of the resultant aniline-derived enaminones was explored through NMR, FTIR and X-ray crystallography. A straightforward purification protocol that employs direct Kugelrohr distillation was identified, and the method was further extended to other amines and ynones, allowing rapid access to these interesting compounds.

17.
Beilstein J Org Chem ; 12: 1851-1862, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829891

RESUMEN

The synthesis of novel tetrahydroquinolines (THQ) and dihydroquinolines (DHQ) are reported using three practical, scalable synthetic approaches to access highly lipophilic analogues bearing a 6-iodo substituent, each with a different means of cyclisation. A versatile and stable quinolin-2-one intermediate was identified, which could be reduced to the corresponding THQ with borane reagents, or to the DHQ with diisobutylaluminium hydride via a novel elimination that is more favourable at higher temperatures. Coupling these strongly electron-donating scaffolds to electron-accepting moieties caused the resulting structures to exhibit strong fluorescence.

18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 36-44, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615858

RESUMEN

Over the last decades, a wide range of biophysical techniques investigating protein-ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.


Asunto(s)
Interferometría/métodos , Proteínas/química , Calorimetría , Ligandos
19.
Mol Microbiol ; 93(2): 317-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24895027

RESUMEN

The extreme resistance of Saccharomyces cerevisiae to copper is overcome by 2-(6-benzyl-2-pyridyl)quinazoline (BPQ), providing a chemical-biology tool which has been exploited in two lines of discovery. First, BPQ is shown to form a red (BPQ)2 Cu(I) complex and promote Ctr1-independent copper-accumulation in whole cells and in mitochondria isolated from treated cells. Multiple phenotypes, including loss of aconitase activity, are consistent with copper-BPQ mediated damage to mitochondrial iron-sulphur clusters. Thus, a biochemical basis of copper-toxicity in S. cerevisiae is analogous to other organisms. Second, iron regulons controlled by Aft1/2, Cth2 and Yap5 that respond to mitochondrial iron-sulphur cluster status are modulated by copper-BPQ causing iron hyper-accumulation via upregulated iron-import. Comparison of copper-BPQ treated, untreated and copper-only treated wild-type and fra2Δ by RNA-seq has uncovered a new candidate Aft1 target-gene (LSO1) and paralogous non-target (LSO2), plus nine putative Cth2 target-transcripts. Two lines of evidence confirm that Fra2 dominates basal repression of the Aft1/2 regulons in iron-replete cultures. Fra2-independent control of these regulons is also observed but CTH2 itself appears to be atypically Fra2-dependent. However, control of Cth2-target transcripts which is independent of CTH2 transcript abundance or of Fra2, is also quantified. Use of copper-BPQ supports a substantial contribution of metabolite repression to iron-regulation.


Asunto(s)
Cobre/metabolismo , Hierro/metabolismo , Quinazolinas/farmacología , Regulón , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cobre/toxicidad , Cristalografía , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Homeostasis , Mitocondrias/química , Mitocondrias/metabolismo , Familia de Multigenes , Quinazolinas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Azufre/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Cell Mol Life Sci ; 71(24): 4911-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24915944

RESUMEN

Dps proteins are members of an extensive family of proteins that oxidise and deposit iron in the form of ferric oxide, and are also able to bind DNA. Ferroxidation centres are formed at the interface of anti-parallel dimers, which further assemble into dodecameric nanocages with a hollow core where ferric oxide is deposited. Streptomyces coelicolor encodes three Dps-like proteins (DpsA, B and C). Despite sharing the conserved four-helix bundle organisation observed in members of the Dps family, they display significant differences in the length of terminal extensions, or tails. DpsA possess both N- and C-terminal tails of different lengths, and their removal affects quaternary structure assembly to varying degrees. DpsC quaternary structure, on the other hand, is heavily dependent on its N-terminal tail as its removal abolishes correct protein folding. Analysis of the crystal structure of dodecamers from both proteins revealed remarkable differences in the position of tails and interface surface area; and provides insight to explain the differences in biochemical behaviour observed while comparing DpsA and DpsC.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas Recombinantes/química , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Streptomyces coelicolor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA