Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Neurol ; 84(5): 659-673, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30232818

RESUMEN

OBJECTIVE: Riboflavin-responsive multiple acyl-coenzyme A dehydrogenation deficiency (RR-MADD) is an inherited fatty acid metabolism disorder mainly caused by genetic defects in electron transfer flavoprotein-ubiquinone oxidoreductase (ETF:QO). The variant ETF:QO protein folding deficiency, which can be corrected by therapeutic dosage of riboflavin supplement, has been identified in HEK-293 cells and is believed to be the molecular mechanism of this disease. To verify this hypothesis in vivo, we generated Etfdh (h)A84T knockin (KI) mice. METHODS: Tissues from these mice as well as muscle biopsies and fibroblasts from 7 RR-MADD patients were used to examine the flavin adenine dinucleotide (FAD) concentration and ETF:QO protein amount. RESULTS: All of the homozygous KI mice (Etfdh (h)A84T/(h)A84T , KI/KI) were initially normal. After being given a high-fat and vitamin B2 -deficient (HF-B2 D) diet for 5 weeks, they developed weight loss, movement ability defects, lipid storage in muscle and liver, and elevated serum acyl-carnitine levels, which are clinically and biochemically similar to RR-MADD patients. Both ETF:QO protein and FAD concentrations were significantly decreased in tissues of HF-B2 D-KI/KI mice and in cultured fibroblasts from RR-MADD patients. After riboflavin treatment, ETF:QO protein increased in proportion to elevated FAD concentrations, but not related to mRNA levels. These results were further confirmed in cultured fibroblasts from RR-MADD patients. INTERPRETATION: For the first time, we successfully developed a RR-MADD mice model and confirmed that FAD homeostasis disturbances played a crucial role on the pathomechanism of RR-MADD in this mouse model and culture cells from patients. Supplementation of riboflavin may stabilize variant ETF:QO protein by rebuilding FAD homeostasis. Ann Neurol 2018;84:667-681.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/genética , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/fisiopatología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Homeostasis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA