RESUMEN
BACKGROUND: Despite significant progress in understanding the mechanisms underlying hippocampal involvement in neuropsychiatric systemic lupus erythematosus (NPSLE), our understanding of how neuroinflammation affects the brain neurotransmitter systems is limited. To date, few studies have investigated the role of neurotransmitters in pathogenesis of NPSLE with contradictory results. METHODS: Hippocampal tissue from NZB/W-F1 lupus-prone mice and age-matched control strains were dissected in both pre-nephritic (3-month-old) and nephritic (6-month-old) stages. High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin (5-HT), dopamine (DA), and their metabolites 5-HIAA and DOPAC, respectively, in mouse hippocampi. RESULTS: Lupus mice exhibit decreased levels of serotonin at the early stages of the disease, along with intact levels of its metabolite 5-HIAA. The 5-HT turnover ratio (5-HIAA/5-HT ratio) was increased in the hippocampus of lupus mice at pre-nephritic stage suggesting that low hippocampal serotonin levels in lupus are attributed to decreased serotonin synthesis. Both DA and DOPAC levels remained unaffected in lupus hippocampus at both early and late stages. CONCLUSION: Impaired hippocampal serotonin synthesis in the hippocampus of lupus-prone mice represents an early neuropsychiatric event. These findings may have important implications for the use of symptomatic therapy in diffuse NPSLE.
Asunto(s)
Lupus Eritematoso Sistémico , Vasculitis por Lupus del Sistema Nervioso Central , Ratones , Animales , Serotonina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido Hidroxiindolacético/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Dopamina/metabolismo , Hipocampo , Vasculitis por Lupus del Sistema Nervioso Central/metabolismoRESUMEN
Nervous system malignancies are characterized by rapid progression and poor survival rates. These clinical observations underscore the need for novel therapeutic insights and pharmacological targets. To this end, here, we identify the orphan nuclear receptor NR5A2/LRH1 as a negative regulator of cancer cell proliferation and promising pharmacological target for nervous system-related tumors. In particular, clinical data from publicly available databases suggest that high expression levels of NR5A2 are associated with favorable prognosis in patients with glioblastoma and neuroblastoma tumors. Consistently, we experimentally show that NR5A2 is sufficient to strongly suppress proliferation of both human and mouse glioblastoma and neuroblastoma cells without inducing apoptosis. Moreover, short hairpin RNA-mediated knockdown of the basal expression levels of NR5A2 in glioblastoma cells promotes their cell cycle progression. The antiproliferative effect of NR5A2 is mediated by the transcriptional induction of negative regulators of the cell cycle, CDKN1A (encoding for p21cip1), CDKN1B (encoding for p27kip1) and Prox1 Interestingly, two well-established agonists of NR5A2, dilauroyl phosphatidylcholine (DLPC) and diundecanoyl phosphatidylcholine, are able to mimic the antiproliferative action of NR5A2 in human glioblastoma cells via the induction of the same critical genes. Most importantly, treatment with DLPC inhibits glioblastoma tumor growth in vivo in heterotopic and orthotopic xenograft mouse models. These data indicate a tumor suppressor role of NR5A2 in the nervous system and render this nuclear receptor a potential pharmacological target for the treatment of nervous tissue-related tumors.
Asunto(s)
Glioblastoma/patología , Neoplasias del Sistema Nervioso/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones SCID , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neoplasias del Sistema Nervioso/metabolismo , Neoplasias del Sistema Nervioso/mortalidad , Células-Madre Neurales/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosfatidilcolinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Asunto(s)
Antiinflamatorios , COVID-19 , Disfunción Cognitiva , Fármacos Neuroprotectores , Olea , Polifenoles , Olea/química , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Humanos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Enfermedad de Alzheimer/tratamiento farmacológicoRESUMEN
INTRODUCTION: Inflammatory mediators are detected in the cerebrospinal fluid of systemic lupus erythematosus patients with central nervous system involvement (NPSLE), yet the underlying cellular and molecular mechanisms leading to neuropsychiatric disease remain elusive. METHODS: We performed a comprehensive phenotyping of NZB/W-F1 lupus-prone mice including tests for depression, anxiety and cognition. Immunofluorescence, flow cytometry, RNA-sequencing, qPCR, cytokine quantification and blood-brain barrier (BBB) permeability assays were applied in hippocampal tissue obtained in both prenephritic (3-month-old) and nephritic (6-month-old) lupus mice and matched control strains. Healthy adult hippocampal neural stem cells (hiNSCs) were exposed ex vivo to exogenous inflammatory cytokines to assess their effects on proliferation and apoptosis. RESULTS: At the prenephritic stage, BBB is intact yet mice exhibit hippocampus-related behavioural deficits recapitulating the human diffuse neuropsychiatric disease. This phenotype is accounted by disrupted hippocampal neurogenesis with hiNSCs exhibiting increased proliferation combined with decreased differentiation and increased apoptosis in combination with microglia activation and increased secretion of proinflammatory cytokines and chemokines. Among these cytokines, IL-6 and IL-18 directly induce apoptosis of adult hiNSCs ex vivo. During the nephritic stage, BBB becomes disrupted which facilitates immune components of peripheral blood, particularly B-cells, to penetrate into the hippocampus further augmenting inflammation with locally increased levels of IL-6, IL-12, IL-18 and IL-23. Of note, an interferon gene signature was observed only at nephritic-stage. CONCLUSION: An intact BBB with microglial activation disrupting the formation of new neurons within the hippocampus represent early events in NPSLE. Disturbances of the BBB and interferon signature are evident later in the course of the disease.
Asunto(s)
Lupus Eritematoso Sistémico , Vasculitis por Lupus del Sistema Nervioso Central , Adulto , Humanos , Ratones , Animales , Lactante , Barrera Hematoencefálica , Interleucina-6 , Interleucina-18 , Microglía , Citocinas , Neurogénesis , Interferones , HipocampoRESUMEN
Observational fear-learning studies in genetically modified animals enable the investigation of the mechanisms underlying the social transmission of fear-related information. Here, we used a three-day protocol to examine fear conditioning by proxy (FCbP) in wild-type mice (C57BL/6J) and mice lacking the ß2-subunit of the nicotinic acetylcholine receptor (nAChR). Male animals of both genotypes were exposed to a previously fear-conditioned (FC) cage mate during the presentation of the conditioned stimulus (CS, tone). On the following day, observer (FCbP) mice were tested for fear reactions to the tone: none of the ß2-KO mice froze to the stimulus, while 30% of the wild-type mice expressed significant freezing. An investigation of the possible factors that predicted the fear response revealed that only wild-type mice that exhibited enhanced and more flexible social interaction with the FC cage mate during tone presentations (Day 2) expressed fear toward the CS (Day-3). Our results indicate that (i) FCbP is possible in mice; (ii) the social transmission of fear depends on the interaction pattern between animals during the FCbP session and (iii) ß2-KO mice display a more rigid interaction pattern compared to wild-type mice and are unable to acquire such information. These data suggest that ß2-nAChRs influence observational fear learning indirectly through their effect on social behaviour.
Asunto(s)
Receptores Nicotínicos , Ratones , Masculino , Animales , Receptores Nicotínicos/genética , Ratones Endogámicos C57BL , Condicionamiento Clásico/fisiología , Miedo/fisiología , AprendizajeRESUMEN
Preclinical and clinical studies support a strong association between mutations in the GBA1 gene that encodes beta-glucocerebrosidase (GCase) (EC 3.2.1.45; glucosylceramidase beta) and Parkinson's disease (PD). Alpha-synuclein (AS), a key player in PD pathogenesis, and GBA1 mutations may independently and synergistically cause lysosomal dysfunction and thus, embody clinically well-validated targets of the neurodegenerative disease process in PD. However, in vivo models, recapitulating pathological features of PD that can be used to dissect the nature of the complex relationship between GCase and AS on the nigrostriatal axis, the region particularly vulnerable in PD, are direly needed. To address this, we implemented a bidirectional approach in mice to examine the effects of: 1) GCase overexpression (wild-type and mutant N370S GBA) on endogenous AS levels and 2) downregulation of endogenous GCase (Gba) combined with AS overexpression. Striatal delivery of viral-mediated GCase overexpression revealed minimal effects on cortical and nigrostriatal AS tissue levels and no significant effect on dopaminergic system integrity. On the other hand, microRNA (miR)-mediated Gba1 downregulation (miR Gba), combined with virus-mediated human AS overexpression (+AS), yields decreased GCase activity in the cortex, mimicking levels seen in GBA1 heterozygous carriers (30-40%), increased astrogliosis and microgliosis, decreased striatal dopamine levels (50% compared to controls) and loss of nigral dopaminergic neurons (~33%)- effects that were all reversible with miR rescue. Most importantly, the synergistic neurodegeneration of miR Gba + AS correlated with augmented AS accumulation and extracellular release in the striatum. Collectively, our results suggest that GCase downregulation alone is not sufficient to recapitulate key pathological features of PD in vivo, but its synergistic interplay with AS, via increased AS levels and extracellular release, drives nigrostriatal neurodegeneration. Furthermore, we report a novel double-hit GBA-AS model that can be used to identify putative mechanisms driving PD pathophysiology and can be subsequently used to test novel therapeutic approaches.
Asunto(s)
Glucosilceramidasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo , Glucosilceramidasa/genética , Lisosomas/metabolismo , Ratones , Mutación , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/genéticaRESUMEN
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a disease associated with dysbiosis, resulting in compromised intestinal epithelial barrier and chronic mucosal inflammation. Patients with IBD present with increased incidence of psychiatric disorders and cognitive impairment. Hippocampus is a brain region where adult neurogenesis occurs with functional implications in mood control and cognition. Using a well-established model of experimental colitis based on the administration of dextran sodium sulfate (DSS) in the drinking water, we sought to characterize the short and long-term effects of colitis on neurogenesis and glia responses in the hippocampus. We show that acute DSS colitis enhanced neurogenesis but with deficits in cell cycle kinetics of proliferating progenitors in the hippocampus. Chronic DSS colitis was characterized by normal levels of neurogenesis but with deficits in the migration and integration of newborn neurons in the functional circuitry of the DG. Notably, we found that acute DSS colitis-induced enhanced infiltration of the hippocampus with macrophages and inflammatory myeloid cells from the periphery, along with elevated frequencies of inflammatory M1-like microglia and increased release of pro-inflammatory cytokines. In contrast, increased percentages of tissue-repairing M2-like microglia, along with elevated levels of the anti-inflammatory cytokine, IL-10 were observed in the hippocampus during chronic DSS colitis. These findings uncover key effects of acute and chronic experimental colitis on adult hippocampal neurogenesis and innate immune cell responses, highlighting the potential mechanisms underlying cognitive and mood dysfunction in patients with IBD.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Células-Madre Neurales , Animales , Humanos , Ratones , Colitis/inducido químicamente , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Células-Madre Neurales/metabolismoRESUMEN
Imperatorin, a naturally derived furanocoumarin, exerts promising neuropharmacological properties. Therefore, it might be applicable in the treatment of brain diseases such as depression. In the present project, we aimed to investigate the sex-dependent effects of imperatorin (1, 5, and 10 mg/kg) on behavior and neurochemistry associated with antidepressant effects. The depressive-like behaviors of male and female Swiss mice were investigated in a forced swim test (FST). Subsequently, High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin, its metabolite, 5-HIAA, and noradrenaline, in mouse brains. The study revealed that only males responded to imperatorin (1 and 5 mg/kg) treatment and caused an antidepressant effect, such as with respect to depressive-like behaviors, lowering immobility time and increasing immobility latency. The HPLC analysis demonstrated that serotonin levels in the prefrontal cortex of females decreased with the middle dose of imperatorin (5 mg/kg), while in the male prefrontal cortex, the lower dose (1 mg/kg) boosted serotonin levels. There were no evident changes observed with respect to noradrenaline and serotonin metabolite levels in the male hippocampus. To conclude, we propose that imperatorin has antidepressant potential, seemingly only in males, influencing brain serotonin level, but the direct mechanism of action requires further investigation.
Asunto(s)
Conducta Animal/efectos de los fármacos , Depresión , Furocumarinas/farmacología , Corteza Prefrontal , Caracteres Sexuales , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Furocumarinas/farmacocinética , Masculino , Ratones , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatologíaRESUMEN
Several lines of evidence indicate that the propagation of misfolded α-synuclein (α-syn) plays a central role in the progression and manifestation of Parkinson's disease. Pathogenic α-syn species can be present in the extracellular space. Thus, the identification and modulation of the key enzymes implicated in extracellular α-syn turnover becomes vital. Kallikrein peptidase 6 has been identified as one of the major α-syn degrading enzymes and has been implicated in the clearance of extracellular α-syn. However, the physiological role of this enzyme in regulating α-syn, in vivo, still remains elusive. Here, by utilizing Klk6 knock-out (Klk6-/- ) mice as our experimental model, we provide insight into the physiologic relevance of endogenous KLK6 expression on α-syn processing. Behavioral phenotyping showed that Klk6-/- mice display no gross behavioral abnormalities. Further in vivo characterization of this mouse model, in the context of α-syn accumulation, showed that KLK6 deletion had no impact on the protein levels of intracellular or extracellular α-syn. Upon in vivo administration of α-syn pre-formed fibrils (PFF), α-syn pathologic accumulations were evident both in the brains of Klk6-/- mice and wt mice without significant differences. Intrastriatal delivery of active KLK6, did not affect secreted α-syn levels observed in the A53T α-syn over-expressing mice. These findings suggest that in the in vivo setting of PFF pathology induction, KLK6 alone is not able to modulate pathology transmission. Our study raises implications for the use of recombinant α-syn fibrils in α-syn turnover studies.
Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Calicreínas/deficiencia , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Femenino , Calicreínas/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinucleinopatías/genética , alfa-Sinucleína/genéticaRESUMEN
The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas Musculares/deficiencia , Miocardio/patología , Esquizofrenia/genética , Animales , Femenino , Humanos , Masculino , RatonesRESUMEN
BACKGROUND: Parkinson's disease psychosis is a prevalent yet underreported and understudied nonmotor manifestation of Parkinson's disease and, arguably, the most debilitating. It is unknown if α-synuclein plays a role in psychosis, and if so, this endophenotype may be crucial for elucidating the neurodegenerative process. OBJECTIVES: We sought to dissect the underlying neurobiology of novelty-induced hyperactivity, reminiscent of psychosis-like behavior, in human α-synuclein BAC rats. RESULTS: Herein, we demonstrate a prodromal psychosis-like phenotype, including late-onset sensorimotor gating disruption, striatal hyperdopaminergic signaling, and persistent novelty-induced hyperactivity (up to 18 months), albeit reduced baseline locomotor activity, that is augmented by d-amphetamine and reversed by classical and atypical antipsychotics. MicroRNA-mediated α-synuclein downregulation in the ventral midbrain rescues the hyperactive phenotype and restores striatal dopamine levels. This phenotype is accompanied by an abundance of age-, brain region- and gene dose-dependent aberrant α-synuclein, including hyperphosphorylation, C-terminal truncation, aggregation pathology, and mild nigral neurodegeneration (27%). CONCLUSIONS: Our findings demonstrate a potential role of α-synuclein in Parkinson's disease psychosis and provide evidence of region-specific perturbations prior to neurodegeneration phenoconversion. The reported phenotype coincides with the latest clinical findings that suggest a premotor hyperdopaminergic state may occur, while at the same time, premotor psychotic symptoms are increasingly being recognized. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Trastornos Psicóticos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Trastornos Psicóticos/genética , Ratas , Ratas Transgénicas , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
Background: Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. Methods: The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. Results: The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. Conclusions: Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine's reinforcing and psychomotor effects.
Asunto(s)
Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Animales , Cannabinoides/farmacología , Indoles/farmacología , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , RimonabantRESUMEN
A link between chronic stress and Parkinson's disease (PD) pathogenesis is emerging. Ample evidence demonstrates that the presynaptic neuronal protein alpha-synuclein (asyn) is closely tied to PD pathogenesis. However, it is not known whether stress system dysfunction is present in PD, if asyn is involved, and if, together, they contribute to neurodegeneration. To address these questions, we assess stress axis function in transgenic rats overexpressing full-length wildtype human asyn (asyn BAC rats) and perform multi-level stress and PD phenotyping following chronic corticosterone administration. Stress signaling, namely corticotropin-releasing factor, glucocorticoid and mineralocorticoid receptor gene expression, is also examined in post-mortem PD patient brains. Overexpression of human wildtype asyn leads to HPA axis dysregulation in rats, while chronic corticosterone administration significantly aggravates nigrostriatal degeneration, serine129 phosphorylated asyn (pS129) expression and neuroinflammation, leading to phenoconversion from a prodromal to an overt motor PD phenotype. Interestingly, chronic corticosterone in asyn BAC rats induces a robust, twofold increase in pS129 expression in the hypothalamus, the master regulator of the stress response, while the hippocampus, both a regulator and a target of the stress response, also demonstrates elevated pS129 asyn levels and altered markers of stress signalling. Finally, defective hippocampal stress signalling is mirrored in human PD brains and correlates with asyn expression levels. Taken together, our results link brain stress system dysregulation with asyn and provide evidence that elevated circulating glucocorticoids can contribute to asyn-induced neurodegeneration, ultimately triggering phenoconversion from prodromal to overt PD.
Asunto(s)
Corticosterona , Enfermedad de Parkinson , Ratas Transgénicas , Estrés Psicológico , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos , Ratas , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Masculino , Corticosterona/sangre , Encéfalo/metabolismo , Encéfalo/patología , Sistema Hipotálamo-Hipofisario/metabolismo , Femenino , Sistema Hipófiso-Suprarrenal/metabolismoRESUMEN
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
RESUMEN
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and the most prevalent monogenic cause of autism. Although the knockout (KO) of the Fmr1 gene homolog in mice is primarily used for elucidating the neurobiological substrate of FXS, there is limited association of the experimental data with the pathophysiological condition in humans. The use of Fmr1 KO rats offers additional translational validity in this regard. Therefore, we employed a multi-level approach to study the behavioral profile and the glutamatergic and GABAergic neurotransmission status in pathophysiology-associated brain structures of Fmr1 KO rats, including the recordings of evoked and spontaneous field potentials from hippocampal slices, paralleled with next-generation RNA sequencing (RNA-seq). We found that these rats exhibit hyperactivity and cognitive deficits, along with characteristic bidirectional glutamatergic and GABAergic alterations in the prefrontal cortex and the hippocampus. These results are coupled to affected excitability and local inhibitory processes in the hippocampus, along with a specific transcriptional profile, highlighting dysregulated hippocampal network activity in KO rats. Overall, our data provide novel insights concerning the biobehavioral profile of FmR1 KO rats and translationally upscales our understanding on pathophysiology and symptomatology of FXS syndrome.
Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Síndrome del Cromosoma X Frágil , Ratas , Ratones , Animales , Humanos , Ratones Noqueados , Hipocampo/metabolismo , Encéfalo/metabolismo , Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Modelos Animales de EnfermedadRESUMEN
Cannabinoid administration modulates both dopaminergic and glutamatergic neurotransmission. The present study examines the effects of high and low dose WIN55,212-2, a CB1 receptor agonist, on extracellular dopamine and glutamate release in vivo via brain microdialysis in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) in parallel to its effects on locomotor activity. WIN55,212-2 increased extracellular dopamine in the NAc (1 mg/kg i.p.), striatum (0.1 and 1 mg/kg i.p.) and PFC (1 mg/kg i.p.). Glutamate release was also elevated by WIN55,212-2 in the PFC (1 mg/kg i.p.) whereas in the NAc (0.1 and 1 mg/kg i.p.) and striatum, it was reduced (1 mg/kg i.p.). WIN55,212-2 administration produced hyperlocomotion at the lower dose (0.1 mg/kg i.p.) and hypolocomotion at the higher dose (1 mg/kg i.p.). Co-administration with the CB1 antagonist, SR-141716A (0.03 mg/kg i.p.), prevented the above effects. According to the present results, WIN55,212-2 affected locomotor activity biphasically while exerting converging effects on dopamine activity but diverging effects on glutamate release between cortical and subcortical regions, especially at the higher dose. These findings emphasize the involvement of the CB1 receptor in the simultaneous modulation of dopaminergic and glutamatergic neurotransmission in brain regions involved in reward and locomotion and suggest possible underlying mechanisms of acute cannabinoid exposure and its psychoactive and behavioural manifestations.
Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Análisis de Varianza , Animales , Benzoxazinas/farmacología , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Microdiálisis , Morfolinas/farmacología , Naftalenos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Rimonabant , Factores de TiempoRESUMEN
INTRODUCTION: Sildenafil is the first effective oral treatment for male erectile dysfunction. Although it is generally accepted that its action is peripheral, it has been suggested that it influences central neural pathways that are involved in male sexual arousal. Recently, it was shown that local sildenafil administration enhances extracellular dopamine (DA) in the nucleus accumbens (NAcc). AIM: The aim of this study was to determine whether sildenafil administration alters dopaminergic and serotonergic activity in the NAcc and the medial preoptic area (mPOA) during a model of sexual arousal. METHODS: An acute (2 days) or chronic (21 days) sildenafil regimen (1 mg/kg) was administered intraperitoneally to male rats. Thirty minutes after the last sildenafil injection, all males were exposed to noncontact erection sessions by the presentation of inaccessible estrous females. Half of the males had previous experience of noncontact sexual encounter and the other half were exposed for the first time. MAIN OUTCOME MEASURES: Tissue levels of DA and its metabolites, 3,4-Dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as serotonin (5-HT) and its metabolite 5-HIAA, were measured in the mPOA and NAcc with high-performance liquid chromatography with electrochemical detector. Dopamine ([DOPAC+HVA]/DA) and serotonin (5-HIAA/5-HT) turnovers were also calculated as indices of neurotransmission. RESULTS: In nontrained males, acute and chronic sildenafil treatment increased DA and 5-HT turnover rates in the mPOA and NAcc. In trained rats, acute sildenafil also increased DA and 5-HT turnover rates in both structures, whereas chronic treatment enhanced 5-HT turnover rate only in the mPOA and DA turnover rate only in the NAcc. CONCLUSIONS: Our data confirm that sildenafil enhances dopaminergic activity in the NAcc, extend these findings to the mPOA and furthermore, reveal sildenafil-induced effects on serotonergic activity in these brain regions as well. Therefore, present findings support an effect of sildenafil on central neural pathways that are involved in the control of sexual arousal.
Asunto(s)
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Erección Peniana , Inhibidores de Fosfodiesterasa 5/administración & dosificación , Piperazinas/administración & dosificación , Área Preóptica/metabolismo , Sulfonas/administración & dosificación , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cromatografía Liquida , Esquema de Medicación , Femenino , Ácido Homovanílico/metabolismo , Ácido Hidroxiindolacético/metabolismo , Inyecciones Intraperitoneales , Masculino , Purinas/administración & dosificación , Ratas , Serotonina/metabolismo , Citrato de SildenafilRESUMEN
Recent evidence has shown that G protein-coupled receptors (GPCRs) are direct sensors of the autophagic machinery and opioid receptors regulate neuronal plasticity and neurotransmission with an as yet unclarified mechanism. Using in vitro and in vivo experimental approaches, this study aims to clarify the potential role of autophagy and κ-opioid receptor (κ-OR) signaling in synaptic alterations. We hereby demonstrate that the selective κ-OR agonist U50,488H, induces autophagy in a time-and dose-dependent manner in Neuro-2A cells stably expressing the human κ-OR by upregulating microtubule-associated protein Light Chain 3-II (LC3-II), Beclin 1 and Autophagy Related Gene 5 (ATG5). Pretreatment of neuronal cells with pertussis toxin blocked the above κ-OR-mediated cellular responses. Our molecular analysis also revealed a κ-OR-driven upregulation of becn1 gene through ERK1,2-dependent activation of the transcription factor CREB in Neuro-2A cells. Moreover, our studies demonstrated that sub-chronic U50,488H administration in mice causes profound increases of specific autophagic markers in the hippocampus with a concomitant decrease of several pre-and post-synaptic proteins, such as spinophilin, postsynaptic density protein 95 (PSD-95) and synaptosomal associated protein 25 (SNAP25). Finally, using acute stress, a stimulus known to increase the levels of the endogenous κ-OR ligand dynorphin, we are demonstrating that administration of the κ-ΟR selective antagonist, nor-binaltorphimine (norBNI), blocks the induction of autophagy and the stress-evoked reduction of synaptic proteins in the hippocampus. These findings provide novel insights about the essential role of autophagic machinery into the mechanisms through which κ-OR signaling regulates brain plasticity.
RESUMEN
Increased expression of alpha-synuclein (ASYN) and decreased expression of Nurr1 are associated with Parkinson's disease (PD) pathogenesis. These two proteins interact functionally and ASYN overexpression suppresses Nurr1 levels. ASYN pan-neuronal overexpression coupled with Nurr1 hemizygosity followed by Nurr1 repression in aging mice results in the manifestation of a typical PD-related phenotype and pathology. Here we investigated in mice the effects of C-terminally truncated ASYN(120) overexpression in dopaminergic (DA-ergic) neurons compounded with Nurr1 hemizygosity ('2-hit-DA'). We report that '2-hit-DA' animals did not manifest a characteristic PD-related phenotype, despite further substantia nigra ASYN-overexpression-dependent and age dependent Nurr1 protein downregulation. However, they displayed increased energy expenditure, reduced striatal dopamine (DA) and prolonged hyperactivity to a novel environment indicating impaired habituation. This DA-ergic dysfunction was observed in young adult '2-hit-DA' mice, persisted throughout life and it was associated with ASYN and Nurr1 synergistic alterations of DAT levels and function. Our experiments indicate that the expression levels of ASYN and Nurr1 are critical in the dysregulation of the nigrostriatal DA system and may be involved in neuropsychiatric aspects of PD.