Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Oncol ; 13: 1251297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188290

RESUMEN

Introduction: We previously reported that cholesterol homeostasis in prostate cancer (PC) is regulated by 27-hydroxycholesterol (27HC) and that CYP27A1, the enzyme that converts cholesterol to 27HC, is frequently lost in PCs. We observed that restoring the CYP27A1/27HC axis inhibited PC growth. In this study, we investigated the mechanism of 27HC-mediated anti-PC effects. Methods: We employed in vitro models and human transcriptomics data to investigate 27HC mechanism of action in PC. LNCaP (AR+) and DU145 (AR-) cells were treated with 27HC or vehicle. Transcriptome profiling was performed using the Affymetrix GeneChip™ microarray system. Differential expression was determined, and gene set enrichment analysis was done using the GSEA software with hallmark gene sets from MSigDB. Key changes were validated at mRNA and protein levels. Human PC transcriptomes from six datasets were analyzed to determine the correlation between CYP27A1 and DNA repair gene expression signatures. DNA damage was assessed via comet assays. Results: Transcriptome analysis revealed 27HC treatment downregulated Hallmark pathways related to DNA damage repair, decreased expression of FEN1 and RAD51, and induced "BRCAness" by downregulating genes involved in homologous recombination regulation in LNCaP cells. Consistently, we found a correlation between higher CYP27A1 expression (i.e., higher intracellular 27HC) and decreased expression of DNA repair gene signatures in castration-sensitive PC (CSPC) in human PC datasets. However, such correlation was less clear in metastatic castration-resistant PC (mCRPC). 27HC increased expression of DNA damage repair markers in PC cells, notably in AR+ cells, but no consistent effects in AR- cells and decreased expression in non-neoplastic prostate epithelial cells. While testing the clinical implications of this, we noted that 27HC treatment increased DNA damage in LNCaP cells via comet assays. Effects were reversible by adding back cholesterol, but not androgens. Finally, in combination with olaparib, a PARP inhibitor, we showed additive DNA damage effects. Discussion: These results suggest 27HC induces "BRCAness", a functional state thought to increase sensitivity to PARP inhibitors, and leads to increased DNA damage, especially in CSPC. Given the emerging appreciation that defective DNA damage repair can drive PC growth, future studies are needed to test whether 27HC creates a synthetic lethality to PARP inhibitors and DNA damaging agents in CSPC.

2.
Stem Cells ; 29(10): 1517-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21898682

RESUMEN

The pluripotency of human embryonic stem cells (hESC) could have great potential for the development of cell replacement therapies. Previous studies have converged on the finding that OCT4, SOX2, and NANOG serve as key regulators in the maintenance of hESC. However, other signals that regulate hESC maintenance remain poorly studied. Here we describe a novel role of an RNA polymerase III (Pol III) subunit, POLR3G, in the maintenance of pluripotency in hESC. We demonstrate the presence of POLR3G in undifferentiated hESC, human induced pluripotent stem cells (hiPSC), and early mouse blastocysts. Downregulation of POLR3G is observed on differentiation of hESC and hiPSC, suggesting that POLR3G can be used as a molecular marker to readily identify undifferentiated pluripotent stem cells from their differentiated derivatives. Using an inducible shRNA lentiviral system, we found evidence that decreased levels of POLR3G result in loss of pluripotency and promote differentiation of hESC to all three germ layers but have no effect on cell apoptosis. On the other hand, overexpression of POLR3G has no effect on pluripotency and apoptosis in undifferentiated hESC. Interestingly, hESC expressing elevated levels of POLR3G are more resistant to differentiation. Furthermore, our experimental results show that POLR3G is a downstream target of OCT4 and NANOG, and our pharmacological study indicated that POLR3G expression can be readily regulated by the Erk1/2 signaling pathway. This study is the first to show an important role of POLR3G in the maintenance of hESC, suggesting a potential role of Pol III transcription in regulating hESC pluripotency.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , ARN Polimerasa III/metabolismo , Animales , Apoptosis , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oocitos/citología , Oocitos/metabolismo , ARN Polimerasa III/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección
3.
Am J Clin Exp Urol ; 9(4): 350-366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541033

RESUMEN

A major metastasis suppressing mechanism is the rapid apoptotic death of cancer cells upon detachment from extracellular matrix, a process called anoikis. Focal adhesion kinase (PTK2/FAK) is a key enzyme involved in evasion of anoikis. We show that loss of the Cub-domain containing protein-1 (CDCP1), paradoxically stimulates FAK activation in the detached state of prostate cancer cells. In CDCP1low DU145 and PC3 prostate cancer cells, detachment-activation of FAK occurs through local production of PI(4,5)P2. PI(4,5)P2 is generated by the PIP5K1c-201 splicing isoform of PIP5K1c, which contains a unique SRC phosphorylation site. In the detached state, reduced expression of CDCP1 and an alternative CDCP1-independent SRC activation mechanism triggers PIP5K1c-pY644 phosphorylation by SRC. This causes a switch of Talin binding from ß1-integrin to PIP5K1c-pY644 and leads to activation of PIP5K1c-FAK. Reduced CDCP1 expression also inactivates CDK5, a negative regulator of PIP5K1c. Furthermore, immersion of prostate cancer cells in 10% human plasma or fetal bovine serum is required for activation of PIP5K1c-FAK. The PIP5K1c induced detachment-activation of FAK in preclinical models sensitizes CDCP1low prostate cancer cells to FAK inhibitors. In patients, CDCP1High versus CDCP1low circulating tumor cells differ in expression of AR-v7, ONECUT2 and HOXB13 oncogenes and TMPRSS2 and display intra-patient heterogeneity of FAK-pY397 expression. Taken together, CDCP1low and CDCP1high detached prostate cancer cells activate distinct cytoplasmic kinase complexes and targetable transcription factors, which has important therapeutic implications.

4.
Oncogene ; 37(21): 2817-2836, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29511352

RESUMEN

Tumor metastasis depends on the dynamic regulation of cell adhesion through ß1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFß1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of ß1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of ß1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates ß1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo , Integrina beta1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Animales , Antígenos de Neoplasias , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Clasificación del Tumor , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
5.
J Pathol Clin Res ; 2(4): 210-222, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27785366

RESUMEN

The limited clinical success of anti-HGF/MET drugs can be attributed to the lack of predictive biomarkers that adequately select patients for treatment. We demonstrate here that quantitative digital imaging of formalin fixed paraffin embedded tissues stained by immunohistochemistry can be used to measure signals from weakly staining antibodies and provides new opportunities to develop assays for detection of MET receptor activity. To establish a biomarker panel of MET activation, we employed seven antibodies measuring protein expression in the HGF/MET pathway in 20 cases and up to 80 cores from 18 human cancer types. The antibodies bind to epitopes in the extra (EC)- and intracellular (IC) domains of MET (MET4EC, SP44_METIC, D1C2_METIC), to MET-pY1234/pY1235, a marker of MET kinase activation, as well as to HGF, pSFK or pMAPK. Expression of HGF was determined in tumour cells (T_HGF) as well as in stroma surrounding cancer (St_HGF). Remarkably, MET4EC correlated more strongly with pMET (r = 0.47) than SP44_METIC (r = 0.21) or D1C2_METIC (r = 0.08) across 18 cancer types. In addition, correlation coefficients of pMET and T_HGF (r = 0.38) and pMET and pSFK (r = 0.56) were high. Prediction models of MET activation reveal cancer-type specific differences in performance of MET4EC, SP44_METIC and anti-HGF antibodies. Thus, we conclude that assays to predict the response to HGF/MET inhibitors require a cancer-type specific antibody selection and should be developed in those cancer types in which they are employed clinically.

6.
Sci Rep ; 5: 12136, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26179371

RESUMEN

Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Microtúbulos/fisiología , Taxoides/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Epotilonas/farmacología , Epotilonas/uso terapéutico , Femenino , Forminas , Silenciador del Gen , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Taxoides/uso terapéutico
7.
J Am Coll Cardiol ; 61(10): 1108-19, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23352785

RESUMEN

OBJECTIVES: We sought to characterize the immunologic profile of allogeneic cardiospheres, which are 3-dimensional, self-assembling, cardiac-derived microtissues, and to evaluate their safety and efficacy in repairing ischemic heart tissue. BACKGROUND: Intramyocardial injection of autologous cardiospheres ameliorates remodeling and improves global function in infarcted myocardium. It is as yet unknown whether allogeneic cardiospheres are similarly effective without eliciting deleterious immune reactions. METHODS: We expanded cardiospheres from male Wistar Kyoto rat hearts and injected them surgically in the peri-infarct zone of Wistar Kyoto (syngeneic group, n = 28) and Brown Norway female rats (allogeneic group, n = 29). Female rats from both strains (n = 37) injected with normal saline served as controls. RESULTS: In vitro, cardiospheres expressed a low immunogenic profile and inhibited proliferation of alloreactive T cells. In vivo, cell engraftment was similar in the syngeneic and allogeneic groups 1 week and 3 weeks after transplantation. Reductions in scar size and scar collagen content and increases in viable mass in the risk region were accompanied by improvements in left ventricular function and attenuation of left ventricle remodeling that were sustained during 6 months of follow up. Transplantation of allogeneic cardiospheres increased tissue expression of the regenerative growth factors vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1, stimulating angiogenesis. Syngeneic and allogeneic cardiospheres attenuated the inflammatory response observed histologically in the peri-infarct region. CONCLUSIONS: Allogeneic cardiospheres increase viable myocardium, decrease scar, improve function, and attenuate adverse remodeling in the infarcted rat heart, without deleterious immunological sequelae. These observations lay the groundwork for developing cardiospheres as a novel off-the-shelf microtissue product for myocardial regeneration.


Asunto(s)
Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Esferoides Celulares/trasplante , Animales , Proliferación Celular , Células Cultivadas , Cicatriz/patología , Colágeno/metabolismo , Citocinas/análisis , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Linfocitos/metabolismo , Masculino , Monocitos/metabolismo , Neovascularización Fisiológica , Ratas , Ratas Wistar , Trasplante Homólogo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Disfunción Ventricular Izquierda/cirugía , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA