Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38604780

RESUMEN

The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46 weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.


Asunto(s)
Tronco Encefálico , Giro del Cíngulo , Frecuencia Cardíaca Fetal , Hipotálamo , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/fisiología , Recién Nacido , Embarazo , Frecuencia Cardíaca Fetal/fisiología , Adulto , Hipotálamo/fisiología , Hipotálamo/diagnóstico por imagen , Hipotálamo/embriología , Adolescente , Adulto Joven , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología
2.
Brain Behav Immun ; 122: 279-286, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163912

RESUMEN

Few human studies have assessed the association of prenatal maternal immune activation (MIA) with measures of brain development and psychiatric risk in newborn offspring. Our goal was to identify the effects of MIA during the 2nd and 3rd trimesters of pregnancy on newborn measures of brain metabolite concentrations, tissue microstructure, and motor development. This was a prospective longitudinal cohort study conducted with nulliparous pregnant women who were aged 14 to 19 years and recruited in their 2nd trimester, as well as their children who were followed through 14 months of age. MIA was indexed by maternal interleukin-6 (IL-6) and C-reactive protein (CRP) in both trimesters of pregnancy. Primary outcomes included: (1) newborn brain metabolite concentrations as ratios to creatine (N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr) measured using Magnetic Resonance Spectroscopy; (2) newborn fractional anisotropy and mean diffusivity, measured using Diffusion Tensor Imaging; and (3) indices of motor development, assessed prenatally and postnatally at ages 4- and 14-months. Maternal IL-6 and CRP levels associated significantly with both metabolites in the putamen, thalamus, insula, and the internal capsule. Maternal IL-6 associated significantly with fractional anisotropy in the putamen, caudate, thalamus, insula, and precuneus, and with mean diffusivity in the inferior parietal and middle temporal gyrus. CRP associated significantly with fractional anisotropy in the thalamus, insula, and putamen. Significant associations were found in common regions across imaging modalities, though the direction of associations differed by immune marker. In addition, both maternal IL-6 and CRP (in both trimesters) prenatally associated significantly with offspring motor development at 4- and 14-months of age. The left thalamus mediated effects of IL-6 on postnatal motor development. These findings demonstrate that levels of MIA in mid- to late pregnancy in a generally healthy sample associate with tissue characteristics in newborn brain regions that primarily support motor integration and coordination, as well as behavioral regulation. Those brain effects may contribute to differences in motor development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA