Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ecol Lett ; 27(1): e14342, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38098152

RESUMEN

Experiments often find that net primary productivity (NPP) increases with species richness when native species are considered. However, relationships may be altered by exotic (non-native) species, which are hypothesized to reduce richness but increase productivity (i.e., 'invasion-diversity-productivity paradox'). We compared richness-NPP relationships using a comparison of exotic versus native-dominated sites across the central USA, and two experiments under common environments. Aboveground NPP was measured using peak biomass clipping in all three studies, and belowground NPP was measured in one study with root ingrowth cores using root-free soil. In all studies, there was a significantly positive relationship between NPP and richness across native species-dominated sites and plots, but no relationship across exotic-dominated ones. These results indicate that relationships between NPP and richness depend on whether native or exotic species are dominant, and that exotic species are 'breaking the rules', altering richness-productivity and richness-C stock relationships after invasion.


Asunto(s)
Biodiversidad , Especies Introducidas , Biomasa , Suelo , Ecosistema
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33419921

RESUMEN

Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO2 that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO2 efflux, JCO2, a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO2 enrichment gradient (250 to 500 µL L-1) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of JCO2 responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in JCO2 on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO2 as the dominant limitation on JCO2 on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear JCO2 response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic JCO2 response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services.


Asunto(s)
Dióxido de Carbono/química , Poaceae/química , Suelo/química , Atmósfera , Biodiversidad , Biomasa , Ciclo del Carbono/fisiología , Cambio Climático , Ecosistema , Retroalimentación , Pradera , Nitrógeno/química , Nitrógeno/farmacología , Fijación del Nitrógeno , Plantas , Microbiología del Suelo , Texas , Agua/análisis
3.
Nature ; 526(7574): 574-7, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26466564

RESUMEN

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Asunto(s)
Biodiversidad , Clima , Ecosistema , Fenómenos Fisiológicos de las Plantas , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales , Desastres/estadística & datos numéricos , Sequías , Pradera , Actividades Humanas
4.
New Phytol ; 222(1): 183-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30367488

RESUMEN

Atmospheric CO2 enrichment usually increases the aboveground net primary productivity (ANPP) of grassland vegetation, but the magnitude of the ANPP-CO2 response differs among ecosystems. Soil properties affect ANPP via multiple mechanisms and vary over topographic to geographic gradients, but have received little attention as potential modifiers of the ANPP-CO2 response. We assessed the effects of three soil types, sandy loam, silty clay and clay, on the ANPP response of perennial C3 /C4 grassland communities to a subambient to elevated CO2 gradient over 10 yr in Texas, USA. We predicted an interactive, rather than additive, effect of CO2 and soil type on ANPP. Contrary to prediction, CO2 and soil additively influenced grassland ANPP. Increasing CO2 by 250 µl l-1 increased ANPP by 170 g m-2 across soil types. Increased clay content from 10% to 50% among soils reduced ANPP by 50 g m-2 . CO2 enrichment increased ANPP via a predominant direct effect, accompanied by a smaller indirect effect mediated by a successional shift to increased dominance of the C4 tallgrass Sorghastrum nutans. Our results indicate a large, positive influence of CO2 enrichment on grassland productivity that resulted from the direct physiological benefits of CO2 augmented by species succession, and was expressed similarly across soils of differing physical properties.


Asunto(s)
Dióxido de Carbono/metabolismo , Pradera , Suelo/química , Dióxido de Carbono/farmacología , Modelos Biológicos , Poaceae/efectos de los fármacos , Poaceae/fisiología , Factores de Tiempo , Agua
5.
Glob Chang Biol ; 24(4): 1771-1781, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282824

RESUMEN

Continuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4 -dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre-industrial to expected mid-21st century levels (250-500 µl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2  = .34-.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species-specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.


Asunto(s)
Biomasa , Dióxido de Carbono/metabolismo , Flores/crecimiento & desarrollo , Pradera , Poaceae/crecimiento & desarrollo , Biodiversidad , Flores/efectos de los fármacos , Nitrógeno , Poaceae/efectos de los fármacos , Suelo/química , Agua/análisis
6.
Proc Biol Sci ; 283(1828)2016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075256

RESUMEN

At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Abejas/fisiología , Dióxido de Carbono/análisis , Solidago/fisiología , Animales , Cambio Climático , Flores/fisiología , Indiana , Maryland , Polen/química , Polinización
7.
Oecologia ; 178(2): 591-601, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25604918

RESUMEN

Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.


Asunto(s)
Biodiversidad , Dióxido de Carbono/química , Pradera , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Suelo/química , Biomasa , Carbono/metabolismo , Ciclo del Nitrógeno , Isótopos de Nitrógeno/metabolismo , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Microbiología del Suelo , Solanum/crecimiento & desarrollo , Solanum/metabolismo , Texas
8.
Ecol Lett ; 17(1): 92-100, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24325664

RESUMEN

Theory predicts that stability should increase with diversity via several mechanisms. We tested predictions in a 5-year experiment that compared low-diversity exotic to high-diversity native plant mixtures under two irrigation treatments. The study included both wet and dry years. Variation in biomass across years (CV) was 50% lower in mixtures than monocultures of both native and exotic species. Growth among species was more asynchronous and overyielding values were greater during and after a drought in native than exotic mixtures. Mean-variance slopes indicated strong portfolio effects in both community types, but the intercept was higher for exotics than for natives, suggesting that exotics were inherently more variable than native species. However, this failed to result in higher CV's in exotic communities because species that heavily dominated plots tended to have lower than expected variance. Results indicate that diversity-stability mechanisms are altered in invaded systems compared to native ones they replaced.


Asunto(s)
Ecosistema , Poaceae/crecimiento & desarrollo , Riego Agrícola
9.
Am Nat ; 183(1): 1-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334731

RESUMEN

The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness affects the temporal stability of biomass production by reanalyzing 27 recent biodiversity experiments conducted with primary producers. We find that, in grasslands, increasing species richness stabilizes whole-community biomass but destabilizes the dynamics of constituent populations. Community biomass is stabilized because species richness impacts mean biomass more strongly than its variance. In algal communities, species richness has a minimal effect on community stability because richness affects the mean and variance of biomass nearly equally. Using a new measure of synchrony among species, we find that for both grasslands and algae, temporal correlations in species biomass are lower when species are grown together in polyculture than when grown alone in monoculture. These results suggest that interspecific interactions tend to stabilize community biomass in diverse communities. Contrary to prevailing theory, we found no evidence that species' responses to environmental variation in monoculture predicted the strength of diversity's stabilizing effect. Together, these results deepen our understanding of when and why increasing species richness stabilizes community biomass.


Asunto(s)
Biodiversidad , Biomasa , Microalgas , Plantas
10.
Appl Environ Microbiol ; 80(23): 7364-77, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239904

RESUMEN

Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R(2) > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R(2) = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2.


Asunto(s)
Aire , Biota , Dióxido de Carbono/análisis , Hongos/clasificación , Hongos/aislamiento & purificación , Microbiología del Suelo , Carbono/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Hongos/genética , Datos de Secuencia Molecular , Fósforo/metabolismo , Análisis de Secuencia de ADN
11.
J Exp Bot ; 65(13): 3415-24, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24501178

RESUMEN

Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPP-driver response differed among experiments because community responses and effects differed. ANPP increased by 80-120g m(-2) per 100 µl l(-1) rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21-38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers.


Asunto(s)
Dióxido de Carbono/metabolismo , Transpiración de Plantas/fisiología , Poaceae/fisiología , Agua/fisiología , Biomasa , Cambio Climático , Demografía , Pradera , Texas
12.
Oecologia ; 175(2): 687-97, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24584284

RESUMEN

Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36-38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas , Poaceae/fisiología , Humanos , Fotosíntesis , Poaceae/crecimiento & desarrollo
13.
Plant Environ Interact ; 5(1): e10132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38323131

RESUMEN

Climate change has initiated movement of both native and non-native (exotic) species across the landscape. Exotic species are hypothesized to establish from seed more readily than comparable native species. We tested the hypothesis that seed limitation is more important for exotic species than native grassland species. We compared seed limitation and invasion resistance over three growing seasons between 18 native and 18 exotic species, grown in both monocultures and mixtures in a field experiment. Half of the plots received a seed mix of the contrasting treatment (i.e., exotic species were seeded into native plots, and native species were seeded into exotic plots), and half served as controls. We found that (1) establishment in this perennial grassland is seed limited, (2) establishment from seed is greater in exotic than native species, and (3) community resistance to seedling establishment was positively related to diversity of extant species, but only in native communities. Native-exotic species diversity and composition differences did not converge over time. Our results imply that native to exotic transformations occur when diversity declines in native vegetation and exotic seeds arrive from adjacent sites, suggesting that managing for high diversity will reduce transformations to exotic dominance.

14.
New Phytol ; 199(4): 956-965, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23731256

RESUMEN

Plant gas exchange is regulated by stomata, which coordinate leaf-level water loss with xylem transport. Stomatal opening responds to internal concentrations of CO2 in the leaf, but changing CO2 can also lead to changes in stomatal density that influence transpiration. Given that stomatal conductance increases under subambient concentrations of CO2 and, conversely, that plants lose less water at elevated concentrations, can downstream effects of atmospheric CO2 be observed in xylem tissue? We approached this problem by evaluating leaf stomatal density, xylem transport, xylem anatomy and resistance to cavitation in Helianthus annuus plants grown under three CO2 regimes ranging from pre-industrial to elevated concentrations. Xylem transport, conduit size and stomatal density all increased at 290 ppm relative to ambient and elevated CO2 concentrations. The shoots of the 290-ppm-grown plants were most vulnerable to cavitation, whereas xylem cavitation resistance did not differ in 390- and 480-ppm-grown plants. Our data indicate that, even as an indirect driver of water loss, CO2 can affect xylem structure and water transport by coupling stomatal and xylem hydraulic functions during plant development. This plastic response has implications for plant water use under variable concentrations of CO2, as well as the evolution of efficient xylem transport.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/farmacología , Cambio Climático , Helianthus/efectos de los fármacos , Helianthus/fisiología , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/fisiología , Floema/anatomía & histología , Floema/efectos de los fármacos , Floema/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Haz Vascular de Plantas/anatomía & histología , Xilema/anatomía & histología , Xilema/efectos de los fármacos , Xilema/fisiología
15.
Glob Chang Biol ; 18(9): 2813-23, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501059

RESUMEN

Dynamic global vegetation models simulate feedbacks of vegetation change on ecosystem processes, but direct, experimental evidence for feedbacks that result from atmospheric CO2 enrichment is rare. We hypothesized that feedbacks from species change would amplify the initial CO2 stimulation of aboveground net primary productivity (ANPP) of tallgrass prairie communities. Communities of perennial forb and C4 grass species were grown for 5 years along a field CO2 gradient (250-500 µL L(-1) ) in central Texas USA on each of three soil types, including upland and lowland clay soils and a sandy soil. CO2 enrichment increased community ANPP by 0-117% among years and soils and increased the contribution of the tallgrass species Sorghastrum nutans (Indian grass) to community ANPP on each of the three soil types. CO2 -induced changes in ANPP and Sorghastrum abundance were linked. The slope of ANPP-CO2 regressions increased between initial and final years on the two clay soils because of a positive feedback from the increase in Sorghastrum fraction. This feedback accounted for 30-60% of the CO2 -mediated increase in ANPP on the upland and lowland clay soils during the final 3 years and 1 year of the experiment, respectively. By contrast, species change had little influence on the ANPP-CO2 response on the sandy soil, possibly because Sorghastrum increased largely at the expense of a functionally similar C4 grass species. By favoring a mesic C4 tall grass, CO2 enrichment approximately doubled the initial enhancement of community ANPP on two clay soils. The CO2 -stimulation of grassland productivity may be significantly underestimated if feedbacks from plant community change are not considered.

16.
Nat Commun ; 13(1): 3797, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778395

RESUMEN

Soil is the largest terrestrial reservoir of organic carbon and is central for climate change mitigation and carbon-climate feedbacks. Chemical and physical associations of soil carbon with minerals play a critical role in carbon storage, but the amount and global capacity for storage in this form remain unquantified. Here, we produce spatially-resolved global estimates of mineral-associated organic carbon stocks and carbon-storage capacity by analyzing 1144 globally-distributed soil profiles. We show that current stocks total 899 Pg C to a depth of 1 m in non-permafrost mineral soils. Although this constitutes 66% and 70% of soil carbon in surface and deeper layers, respectively, it is only 42% and 21% of the mineralogical capacity. Regions under agricultural management and deeper soil layers show the largest undersaturation of mineral-associated carbon. Critically, the degree of undersaturation indicates sequestration efficiency over years to decades. We show that, across 103 carbon-accrual measurements spanning management interventions globally, soils furthest from their mineralogical capacity are more effective at accruing carbon; sequestration rates average 3-times higher in soils at one tenth of their capacity compared to soils at one half of their capacity. Our findings provide insights into the world's soils, their capacity to store carbon, and priority regions and actions for soil carbon management.


Asunto(s)
Carbono , Suelo , Agricultura , Secuestro de Carbono , Minerales
17.
Ecology ; 102(6): e03332, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705570

RESUMEN

Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (ß diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of ß diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher ß diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and ß diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and ß diversity lead to a positive diversity-stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.


Asunto(s)
Biodiversidad , Ecosistema
18.
Ecology ; 101(7): e03039, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32134498

RESUMEN

Global change includes invasion by exotic (nonnative) plant species and altered precipitation patterns, and these factors may affect terrestrial carbon (C) storage. We measured soil C changes in experimental mixtures of all exotic or all native grassland plant species under two levels of summer drought stress (0 and +128 mm). After 8 yr, soils were sampled in 10-cm increments to 100-cm depth to determine if soil C differed among treatments in deeper soils. Total soil C (organic + inorganic) content was significantly higher under native than exotic plantings, and differences increased with depth. Surprisingly, differences after 8 yr in C were due to carbonate and not organic C fractions, where carbonate was ~250 g C/m2 lower to 1-m soil depth under exotic than native plantings. Our results indicate that soil carbonate is an active pool and can respond to differences in plant species traits over timescales of years. Significant losses of inorganic C might be avoided by conserving native grasslands in subhumid ecosystems.


Asunto(s)
Carbono , Suelo , Carbonatos , Ecosistema , Pradera , Poaceae
19.
Ecol Lett ; 12(5): 443-51, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19379138

RESUMEN

Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identified the mechanisms involved. Additionally, we tested whether biodiversity, productivity and temporal stability were similarly influenced by particular types of species interactions. We found that productivity was less variable among years in plots planted with more species. Temporal stability did not depend on whether the species were planted equally abundant (high evenness) or not (realistically low evenness). Greater richness increased temporal stability by increasing overyielding, asynchrony of species fluctuations and statistical averaging. Species interactions that favoured unproductive species increased both biodiversity and temporal stability. Species interactions that resulted in niche partitioning or facilitation increased both productivity and temporal stability. Thus, species interactions can promote biodiversity and ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Biológicos , Poaceae/crecimiento & desarrollo , Biomasa , Especificidad de la Especie , Texas
20.
Ecol Lett ; 12(5): 432-42, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19379137

RESUMEN

In many systems, native communities are being replaced by novel exotic-dominated ones. We experimentally compared species diversity decline between nine-species grassland communities under field conditions to test whether diversity maintenance mechanisms differed between communities containing all exotic or all native species using a pool of 40 species. Aboveground biomass was greater in exotic than native plots, and this difference was larger in mixtures than in monocultures. Species diversity declined more in exotic than native communities and declines were explained by different mechanisms. In exotic communities, overyielding species had high biomass in monoculture and diversity declined linearly as this selection effect increased. In native communities, however, overyielding species had low biomass in monoculture and there was no relationship between the selection effect and diversity decline. This suggests that, for this system, yielding behaviour is fundamentally different between presumably co-evolved natives and coevolutionarily naive exotic species, and that native-exotic status is important to consider.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Biológicos , Poaceae/crecimiento & desarrollo , Biomasa , Conservación de los Recursos Naturales/métodos , Especificidad de la Especie , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA