Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Rev Mar Sci ; 16: 487-511, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231736

RESUMEN

Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.


Asunto(s)
Bahías , Ecosistema , Bahamas , Evolución Biológica , Sedimentos Geológicos
2.
Sci Total Environ ; 912: 168804, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036117

RESUMEN

Brine pools in deep-sea environments provide unique perspectives into planetary and geological processes, extremophile microbial communities, and sedimentary records. The NEOM Brine Pool Complex was the first deep-sea brine pool system found in the Gulf of Aqaba, representing a significant extension of the geographical range and depositional setting of Red Sea brine pools. Here, we use a combination of brine pool samples collected via cast using a conductivity, temperature, depth instrument (CTD), as well as interstitial porewaters extracted from a sediment core collected in the NEOM Brine Pool to characterize the chemical composition and subsurface evolution of the brine. New results indicate that the NEOM brines and the subsurface porewaters may originate from different sources. Elemental concentrations suggest the brines in the NEOM pool are likely derived from dissolution of sub-seabed evaporites. In contrast, the sedimentary porewaters appear to have been influenced by periodic turbidite flows, generated either by earthquakes, submarine landslides, or flash floods, in which normal marine waters from the overlying Red Sea became entrained, periodically disturbing the chemistry of the brine pool. Thus, sediment porewaters beneath brine pools may record transient and dynamic changes in these deep marine depositional environments, reflecting the interplay between climate, tectonics, and sedimentation patterns along a rapidly urbanizing coastline. In concert, new results from NEOM extend the range and chemical constraints on Red Sea Brine Pools and highlight the dynamic interplay between Red Sea Deep water, dissolving evaporites, turbidites, and subsurface fluids that produce these unique depositional environments which host microbial life at the edge of habitability. In concert with sedimentological indicators, the chemistry of porewaters beneath deep-sea brine pools may present detailed records of natural hazards arising from interactions between the atmosphere, lithosphere, hydrosphere, and anthroposphere.

3.
Waste Manag ; 171: 545-556, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806162

RESUMEN

Sargassum spp. (specifically Sargassum fluitans and S. natans), one of the dominant forms of marine macroalgae (seaweed) found on the beaches of Florida, is washing up on the shores throughout the Caribbean in record quantities. Currently, a common management option is to haul and dispose of beached Sargassum in local landfills, potentially wasting a valuable renewable resource. The objective of this study was to determine whether composting represents a feasible alternative to managing Sargassum inundations through measurements and comparisons to eleven guidelines. Specifically, we assessed the characteristics of the compost [physical-chemical parameters (temperature, moisture content, pH, and conductivity), nutrient ratios (C:N), elemental composition, bacteria levels, and ability to sustain plant growth] in both small- and large scale experiments. Results show that although nutrient concentration ratios were not within the standards outlined by the U.S. Composting Council (USCC), the Sargassum compost was able to sustain the growth of radishes (Raphanus sativus L., var. Champion). Trace metal concentrations in the compost product were within five regulatory guidelines evaluated, except for arsenic (As) (6.64-26.5 mg/kg), which exceeded one of the five (the Florida Soil Cleanup Target Level for residential use). Bacteria levels were consistent with regulatory guidelines for compost produced in large-scale outdoor experiments but not for the small-scale set conducted in enclosed tumblers. Overall results support that Sargassum compost can be beneficially used for fill and some farming applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA