Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 289(10): 6669-6680, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24425868

RESUMEN

Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.


Asunto(s)
Péptidos/química , Pliegue de Proteína , Superóxido Dismutasa/química , Amiloide/química , Humanos , Cuerpos de Inclusión/química , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Péptidos/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
2.
Nat Methods ; 9(5): 467-70, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426490

RESUMEN

We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.


Asunto(s)
Citometría de Flujo/métodos , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteína Huntingtina , Cuerpos de Inclusión/metabolismo , Transporte de Proteínas
3.
Adv Exp Med Biol ; 769: 125-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23560308

RESUMEN

Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.


Asunto(s)
Enfermedad de Huntington/metabolismo , Péptidos/química , Deficiencias en la Proteostasis/metabolismo , Microambiente Celular , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Mutación , Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/fisiopatología
4.
Eur J Cell Biol ; 94(2): 114-27, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25538032

RESUMEN

Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.


Asunto(s)
Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Forma BB de la Creatina-Quinasa/metabolismo , Macrófagos/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Biología Computacional , Creatinina/análogos & derivados , Creatinina/farmacología , Drosophila melanogaster , Inhibidores Enzimáticos/farmacología , Humanos , Macrófagos/ultraestructura , Ratones , Estructura Terciaria de Proteína
5.
Nat Struct Mol Biol ; 22(12): 1008-15, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26571108

RESUMEN

Polyglutamine (polyGln) expansions in nine human proteins result in neurological diseases and induce the proteins' tendency to form ß-rich amyloid fibrils and intracellular deposits. Less well known are at least nine other human diseases caused by polyalanine (polyAla)-expansion mutations in different proteins. The mechanisms of how polyAla aggregates under physiological conditions remain unclear and controversial. We show here that aggregation of polyAla is mechanistically dissimilar to that of polyGln and hence does not exhibit amyloid kinetics. PolyAla assembled spontaneously into α-helical clusters with diverse oligomeric states. Such clustering was pervasive in cells irrespective of visible aggregate formation, and it disrupted the normal physiological oligomeric state of two human proteins natively containing polyAla: ARX and SOX3. This self-assembly pattern indicates that polyAla expansions chronically disrupt protein behavior by imposing a deranged oligomeric status.


Asunto(s)
Amiloide/metabolismo , Péptidos/química , Péptidos/metabolismo , Agregación Patológica de Proteínas , Multimerización de Proteína , Humanos , Estructura Secundaria de Proteína
6.
Methods Mol Biol ; 1017: 59-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23719907

RESUMEN

Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.


Asunto(s)
Fluorescencia , Proteínas Fluorescentes Verdes/química , Péptidos/química , Proteínas Recombinantes de Fusión/química , Animales , Línea Celular , Centrifugación por Gradiente de Densidad/métodos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Péptidos/genética , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA