Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 265: 110288, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421567

RESUMEN

Although river restoration has increased rapidly, observations of successful ecological recovery are rare, mostly due to a discrepancy in the spatial scale of the impact and the restoration. Rivers and their ecological communities are a product of four river facets-hydrology, geomorphology, ecology and biogeochemistry-that act and interact on several spatial scales, from the sub-reach to the reach and catchment scales. The four river facets usually affect one another in predictable pathways (e.g., hydrology commonly controls geomorphology), but we show that the order in which they affect each other and can be restored varies depending on ecoregion and hydroclimatic regime. Similarly, processes at different spatial scales can be nested or independent of those at larger scales. Although some restoration practices are dependent of those at higher scales, other reach-scale restoration efforts are independent and can be carried out prior to or concurrently with larger-scale restoration. We introduce a checklist using the four river facets to prioritize restoration at three spatial scales in order to have the largest positive effect on the entire catchment. We apply this checklist to two contrasting regions-in northern Sweden and in southern Brazil-with different anthropogenic effects and interactions between facets and scales. In the case of nested processes that are dependent on larger spatial scales, reach-scale restoration in the absence of restoration of catchment-scale processes can frankly be a waste of money, providing little ecological return. However, depending on the scale-interdependence of processes of the river facets, restoration at smaller scales may be sufficient. This means that the most appropriate government agency should be assigned (i.e., national vs. county) to most effectively oversee river restoration at the appropriate scale; however, this first requires a catchment-scale analysis of feedbacks between facets and spatial scale interdependence.


Asunto(s)
Conservación de los Recursos Naturales , Hidrología , Ríos , Brasil , Ecosistema , Suecia
2.
Ecol Appl ; 28(2): 587-597, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29280235

RESUMEN

Although ecological restoration generally succeeds in increasing physical heterogeneity, many projects fail to enhance biota. Researchers have suggested several possible explanations, including insufficient restoration intensity, or time-lags in ecological responses that prevent detection of significant changes in short-term monitoring programs. This study aims to evaluate whether benthic macroinvertebrate communities responded to an expanded set of stream restoration measures within a study period of one to five years after completion of the restoration project. We studied 10 forest streams in northern Sweden that were channelized in the past for timber floating. Managers subjected six of these streams to habitat restoration, on each of these we selected two reaches, located in close proximity but differing in restoration intensity. In "basic" restored reaches, the restoration managers broke up the channelized banks and returned cobbles and small boulders to the main channel. In "enhanced" restoration reaches, they added additional large wood and boulders to reaches previously subjected to basic restoration, and rehabilitated gravel beds. The remaining four streams were not restored, and thus represent the baseline impacted (channelized) condition. We surveyed stream benthic assemblages before the enhanced restoration (year 2010) and three times afterward between 2011 and 2015. Five years after restoration, macroinvertebrate assemblages at the enhanced restored reaches were more differentiated from channelized conditions than those at basic-restored reaches. This reflected increased relative abundances of the insect orders Ephemeroptera and Trichoptera and the bivalve molluscs Sphaeriidae and decreased relative abundances of Chironomidae (Diptera). Analysis of functional traits provided further insights on the mechanistic explanations driving the recovery, e.g., indicating that the augmented channel retention capacity at enhanced restored reaches favored taxa adapted to slow flow conditions and more effectively retained passive aquatic dispersers. The increased restoration intensity in enhanced restored reaches has resulted in shifts in the composition of benthic macroinvertebrate assemblages, including increases in more sensitive taxa. These shifts became fully apparent five years after the enhanced restoration. Our results emphasize the value of longer-term monitoring to assess ecological responses following restoration, and of undertaking additional restoration as a valuable management option for previously restored sites that failed to achieve biotic recovery.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Invertebrados , Ríos , Animales , Agricultura Forestal , Suecia
3.
Ecol Appl ; 25(5): 1373-89, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26485962

RESUMEN

A lack of ecological responses in stream restoration projects has been prevalent throughout recent literature with many studies reporting insufficient time for recovery. We assessed the relative importance of time, site variables, and landscape setting for understanding how plant species richness and understory productivity recover over time in riparian zones of northern Swedish streams. We used a space-for-time substitution consisting of 13 stream reaches restored 5-25 years ago, as well as five unrestored channelized reference reaches. We inventoried the riparian zone for all vascular plant species along 60-m study reaches and quantified cover and biomass in plots. We found that while species richness increased with time, understory biomass decreased. Forbs made up the majority of the species added, while the biomass of graminoids decreased the most over time, suggesting that the reduced dominance of graminoids favored less productive forbs. Species richness and density patterns could be attributed to dispersal limitation, with anemochorous species being more associated with time after restoration than hydrochorous, zoochorous, or vegetatively reproducing species. Using multiple linear regression, we found that time along with riparian slope and riparian buffer width (e.g., distance to logging activities) explained the most variability in species richness, but that variability in total understory biomass was explained primarily by time. The plant community composition of restored reaches differed from that of channelized references, but the difference did not increase over time. Rather, different time categories had different successional trajectories that seemed to converge on a unique climax community for that time period. Given our results, timelines for achieving species richness objectives should be extended to 25 years or longer if recovery is defined as a saturation of the accumulation of species over time. Other recommendations include making riparian slopes as gentle as possible given the landscape context and expanding riparian buffer width for restoration to have as much impact as possible.


Asunto(s)
Restauración y Remediación Ambiental , Plantas/clasificación , Ríos , Monitoreo del Ambiente , Suecia , Factores de Tiempo
4.
Biol Rev Camb Philos Soc ; 89(4): 791-804, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24393609

RESUMEN

Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams and rivers may mitigate some effects of anticipated climate change on ice and vegetation dynamics by, for example, slowing down flows and increasing water depth, thus reducing the potential for massive formation of underwater ice.


Asunto(s)
Hielo , Plantas/anatomía & histología , Movimientos del Agua , Cambio Climático , Ríos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA