Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(3): 560-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181840

RESUMEN

The allergen-IgE interaction is essential for the genesis of allergic responses, yet investigation of the molecular basis of these interactions is in its infancy. Precision engineering has unveiled the molecular features of allergen-antibody interactions at the atomic level. High-resolution technologies, including x-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, determine allergen-antibody structures. X-ray crystallography of an allergen-antibody complex localizes in detail amino acid residues and interactions that define the epitope-paratope interface. Multiple structures involving murine IgG mAbs have recently been resolved. The number of amino acids forming the epitope broadly correlates with the epitope area. The production of human IgE mAbs from B cells of allergic subjects is an exciting recent development that has for the first time enabled an actual IgE epitope to be defined. The biologic activity of defined IgE epitopes can be validated in vivo in animal models or by measuring mediator release from engineered basophilic cell lines. Finally, gene-editing approaches using the Clustered Regularly Interspaced Short Palindromic Repeats technology to either remove allergen genes or make targeted epitope engineering at the source are on the horizon. This review presents an overview of the identification and validation of allergenic epitopes by precision engineering.


Asunto(s)
Alérgenos , Proteínas de Plantas , Ratones , Humanos , Animales , Epítopos , Microscopía por Crioelectrón , Secuencia de Aminoácidos , Inmunoglobulina E , Anticuerpos Monoclonales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38697404

RESUMEN

BACKGROUND: Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE: We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS: X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS: The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS: These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38718950

RESUMEN

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.

4.
Clin Exp Allergy ; 54(1): 46-55, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38168500

RESUMEN

INTRODUCTION: Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2. We sought to test if structural information on these epitopes could indicate mutagenesis targets for designing a hypoallergen and evaluated the reduction in IgE binding via immunochemistry and a mouse model of passive cutaneous anaphylaxis (PCA). METHODS: X-ray crystallography characterized the conformational epitopes in detail, followed by mutational analysis of key residues to modify monoclonal antibody (mAb) and serum IgE binding, assessed by ELISA and biolayer interferometry. A designed Ara h 2 hypoallergen was tested for reduced vascularization in mouse PCA experiments using pooled peanut allergic patient serum. RESULTS: A ternary crystal structure of Ara h 2 in complex with patient antibodies 13T1 and 13T5 was determined. Site-specific mutants were designed that reduced 13T1, 13T5, and 22S1 mAbs binding by orders of magnitude. By combining designed mutations from the three major conformational bins, a hexamutant (Ara h 2 E46R, E89R, E97R, E114R, Q146A, R147E) was created that reduced IgE binding in serum from allergic patients. Further, in the PCA model where mice were primed with peanut allergic patient serum, reactivity upon allergen challenge was significantly decreased using the hexamutant. CONCLUSION: These studies demonstrate that prior knowledge of common conformational epitopes can be used to engineer reduced IgE reactivity, an important first step in hypoallergen design.


Asunto(s)
Hipersensibilidad , Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Epítopos , Secuencia de Aminoácidos , Antígenos de Plantas , Inmunoglobulina E , Albuminas 2S de Plantas , Alérgenos , Arachis
5.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930950

RESUMEN

Antibodies are widely used in medicinal and scientific research due to their ability to bind to a specific antigen. Most often, antibodies are composed of heavy and light chain domains. Under physiological conditions, light chains are produced in excess, as compared to the heavy chain. It is now known that light chains are not silent partners of the heavy chain and can modulate the immune response independently. In this work, the first crystal structure of a light chain dimer originating from mice is described. It represents the light chain dimer of 6A8, a monoclonal antibody specific to the allergen Der f 1. Building on the unexpected occurrence of this kind of dimer, we have demonstrated that this light chain is stable in solution alone. Moreover, enzyme-linked immunosorbent assays (ELISA) have revealed that, when the light chain is not partnered to its corresponding heavy chain, it interacts non-specifically with a wide range of proteins. Computational studies were used to provide insight on the role of the 6A8 heavy chain domain in the specific binding to Der f 1. Overall, this work demonstrates and supports the ongoing notion that light chains can function by themselves and are not silent partners of heavy chains.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina , Multimerización de Proteína , Animales , Ratones , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Modelos Moleculares , Unión Proteica , Cristalografía por Rayos X , Conformación Proteica , Cadenas Pesadas de Inmunoglobulina/química
6.
Curr Allergy Asthma Rep ; 23(1): 53-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459330

RESUMEN

PURPOSE OF REVIEW: Bound to its high affinity receptor on mast cells and basophils, the IgE antibody molecule plays an integral role in the allergic reaction. Through interactions with the allergen, it provides the sensitivity and specificity parameters for cell activation and mediator release that produce allergic symptoms. Advancements in human hybridoma technologies allow for the generation and molecular definition of naturally occurring allergen-specific human IgE monoclonal antibodies. RECENT FINDINGS: A high-resolution structure of dust mite allergen Der p 2 in complex with Fab of the human IgE mAb 2F10 was recently determined using X-ray crystallography. The structure reveals the fine molecular details of IgE 2F10 binding its 750 Å2 conformational epitope on Der p 2. This review provides an overview of this major milestone in allergy, the first atomic resolution structure of an authentic human IgE epitope. The molecular insights that IgE epitopes provide will allow for structure-based design approaches to the development of novel diagnostics, antibody therapeutics, and immunotherapies.


Asunto(s)
Hipersensibilidad , Inmunoglobulina E , Humanos , Anticuerpos Monoclonales/uso terapéutico , Epítopos/química , Alérgenos
7.
J Immunol ; 205(8): 1999-2007, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32907999

RESUMEN

IgE Abs drive the symptoms of allergic disease upon cross-linking allergens on mast cells or basophils. If the IgE binding sites on the allergens could be identified, it may be useful for creating new forms of immunotherapy. However, direct knowledge of the human IgE (hIgE) epitopes is limited because of the very low frequency of IgE-producing B cells in blood. A new hybridoma technology using human B cells from house dust mite-allergic patients was used to identify four Der p 2-specific hIgE mAbs. Their relative binding sites were assessed and compared by immunoassays with three previously studied murine IgG mAbs. Immunoassays showed that the recognition of Der p 2 by the first three hIgE was inhibited by a single murine IgG, but the fourth hIgE recognized a different epitope from all the other mAbs. The functional ability of the hIgE that bind different epitopes to cross-link Der p 2 was demonstrated in a mouse model of passive systemic anaphylaxis. Nuclear magnetic resonance analyses of Der p 2 in complex with IgG and IgE Abs were used to identify specific residues in the epitopes. To our knowledge, the combination of immunoassays to distinguish overlapping epitopes and nuclear magnetic resonance analyses to identify specific residues involved in Ab binding provided the first epitope mapping of hIgE mAbs to an allergen. The technologies developed in this study will be useful in high-resolution mapping of human epitopes on other Ags and the design of improved therapeutics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Mapeo Epitopo , Epítopos/inmunología , Inmunoglobulina E/inmunología , Humanos
8.
Allergy ; 76(8): 2367-2382, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866585

RESUMEN

Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small-molecule ligands. Ligand-binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis-related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen ß-lactoglobulin from cow's milk is notably more promiscuous. Non-specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid-binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand-binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Alérgenos/metabolismo , Animales , Bovinos , Femenino , Ligandos , Polen , Unión Proteica
9.
Allergy ; 76(8): 2383-2394, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33655520

RESUMEN

Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.


Asunto(s)
Alérgenos , Inmunoglobulina E , Animales , Carbohidratos , Reacciones Cruzadas , Epítopos , Humanos
10.
J Immunol ; 203(9): 2545-2556, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31554696

RESUMEN

Der p 2 is one of the most important allergens from the house dust mite Dermatophagoides pteronyssinus Identification of human IgE Ab binding epitopes can be used for rational design of allergens with reduced IgE reactivity for therapy. Antigenic analysis of Der p 2 was performed by site-directed mutagenesis based on the x-ray crystal structure of the allergen in complex with a Fab from the murine IgG mAb 7A1 that binds an epitope overlapping with human IgE binding sites. Conformational changes upon Ab binding were confirmed by nuclear magnetic resonance using a 7A1-single-chain variable fragment. In addition, a human IgE Ab construct that interferes with mAb 7A1 binding was isolated from a combinatorial phage-display library constructed from a mite-allergic patient and expressed as two recombinant forms (single-chain Fab in Pichia pastoris and Fab in Escherichia coli). These two IgE Ab constructs and the mAb 7A1 failed to recognize two Der p 2 epitope double mutants designed to abolish the allergen-Ab interaction while preserving the fold necessary to bind Abs at other sites of the allergen surface. A 10-100-fold reduction in binding of IgE from allergic subjects to the mutants additionally showed that the residues mutated were involved in IgE Ab binding. In summary, mutagenesis of a Der p 2 epitope defined by x-ray crystallography revealed an IgE Ab binding site that will be considered for the design of hypoallergens for immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Sitios de Unión de Anticuerpos , Desensibilización Inmunológica/métodos , Inmunoglobulina E/inmunología , Anticuerpos Monoclonales/química , Antígenos Dermatofagoides/química , Proteínas de Artrópodos/química , Cristalografía por Rayos X , Epítopos/inmunología , Humanos , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/inmunología
11.
Clin Exp Allergy ; 50(3): 401-405, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31880850

RESUMEN

BACKGROUND: Small, basic peanut proteins are often poorly extracted in pH-neutral buffers that are optimal for the extraction of peanut storage proteins such as Ara h 1. As a result, such proteins are easily missed as potential allergens. OBJECTIVE: To analyse the allergenic composition of the basic peanut protein (BPP) fraction. METHODS: A peanut extract prepared at pH 4 was fractionated by physicochemical procedures. Chemical analysis was performed by SDS-PAGE and mass spectrometry. Because immunoblotting was found to be inefficient for most of these small basic proteins, IgE-binding activity was measured by coupling the fractions to CNBr-activated Sepharose, followed by incubation with sera from 55 Dutch peanut-allergic children and 125 I-labelled anti-IgE. RESULTS: Most IgE reactivity of the BPP fraction was due to the 5-7 kDa amino-terminal fragment of Ara h 1. This finding was confirmed by the use of the fragment in recombinant form, to which 25/55 of the sera was IgE-positive. CONCLUSION: The amino-terminal fragment of Ara h 1, a member of a family of small anti-microbial proteins, is an allergen independent of the carboxy-terminal fragment of Ara h 1.


Asunto(s)
Secuencia de Aminoácidos , Antígenos de Plantas/inmunología , Inmunoglobulina E/inmunología , Proteínas de la Membrana/inmunología , Proteínas de Plantas/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Antígenos de Plantas/genética , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Proteínas Citotóxicas Formadoras de Poros/genética
12.
J Allergy Clin Immunol ; 144(4): 935-944, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31201891

RESUMEN

BACKGROUND: Cockroach is one of the most important sources of indoor allergens and can lead to IgE sensitization and development of rhinitis and asthma. OBJECTIVE: We sought to perform a cockroach allergen component analysis to determine the allergens and antibody levels and patterns of sensitization associated with asthma and rhinitis. METHODS: Antibody (IgE, IgG, and IgG4) levels to total cockroach and 8 cockroach allergens were determined in 2 groups of cockroach-sensitized 10-year-old children with (n = 19) or without (n = 28) asthma and rhinitis. Allergen-specific antibody levels were measured in streptavidin ImmunoCAPs loaded with each of the recombinant allergens from groups 1, 2, 4, 5, 6, 7, 9, and 11, and total cockroach-specific IgE levels were measured with the i6 ImmunoCAP. RESULTS: IgE antibody levels to cockroach allergens and extract, but not IgG or IgG4 antibody levels, differed between subjects with and without asthma and rhinitis. Specifically, recognition of more cockroach allergens with higher allergen-specific IgE levels was associated with disease. Variable patterns of sensitization with no immunodominant allergens were found in both groups. There was a good correlation between the sum of allergen-specific IgE and total cockroach IgE levels (r = 0.86, P < .001). CONCLUSIONS: Component analysis of 8 cockroach allergens revealed significant differences in IgE reactivity associated with the presence of asthma and rhinitis. Allergen-specific IgE titers and sensitization profiles were associated with asthma and rhinitis.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Cucarachas/inmunología , Rinitis/inmunología , Animales , Asma/sangre , Asma/etiología , Niño , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Masculino , Rinitis/sangre , Rinitis/etiología , Población Urbana
13.
J Allergy Clin Immunol ; 143(4): 1474-1481.e8, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30170124

RESUMEN

BACKGROUND: Cockroach allergens are an important cause of IgE-mediated sensitization in inner-city asthmatic patients. However, cockroach extracts used for diagnosis and immunotherapy are not standardized. OBJECTIVE: We sought to determine the allergen content of nonstandardized German cockroach extracts and the levels of sensitization to an expanded set of cockroach allergens as determinants of in vitro extract potency for IgE reactivity. METHODS: Twelve German cockroach extracts were compared for allergen content and potency of IgE reactivity. Bla g 1, Bla g 2, and Bla g 5 were measured by using immunoassays. IgE antibody levels to 8 purified recombinant allergens from groups 1, 2, 4, 5, 6, 7, 9, and 11 were measured by using ImmunoCAP. IgE antibody binding inhibition assays were performed to assess extract in vitro potencies (concentration inhibiting 30% of the total IgE antibody-binding inhibition) relative to an arbitrarily selected reference extract in 5 patients with cockroach allergy. RESULTS: Allergen levels were highly variable. Three new major allergens (groups 6, 9, and 11), were identified among highly cockroach-sensitized subjects (CAP class ≥ 3). Sensitization profiles were unique per subject without immunodominant allergens. The sum of IgE to 8 allergen components showed a good correlation with cockroach-specific IgE levels (r = 0.88, P < .001). In vitro potencies varied among different extracts per subject and among subjects for each extract. CONCLUSIONS: The in vitro potency of German cockroach extracts for IgE reactivity depends on allergen content and allergen-specific IgE titers of patients with cockroach allergy. These factors are relevant for selection of potent extracts to be used for immunotherapy and for the design and interpretation of data from immunotherapy trials.


Asunto(s)
Alérgenos/inmunología , Blattellidae/inmunología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Proteínas de Insectos/inmunología , Animales , Femenino , Humanos , Hipersensibilidad/etiología , Masculino
14.
Curr Allergy Asthma Rep ; 19(3): 17, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30815753

RESUMEN

PURPOSE OF REVIEW: Allergen-antibody complexes are extremely valuable in describing the detailed molecular features of epitopes. This review summarizes insights gained from recently published co-structures and what obstacles impede the acquisition of further data. RECENT FINDINGS: Structural epitope data helped define the epitopes of two anti-Fel d 1 antibodies undergoing phase I clinical trials, providing a greater level of detail than was possible through hydrogen-deuterium exchange protection studies. Separately, a human camelid-like antibody structure with lysozyme described several unique features in a long variable loop that interacted with the active site cleft of Gal d 4. Finally, a co-structure conclusively demonstrated that Phl p 7 could function as a superantigen and that an antibody could simultaneously recognize two epitopes. These remarkable assertions would not have been possible without visualization of the complex. Only three new complexes have appeared in the last few years, suggesting that there are major impediments to traditional production and crystallization. The structural data was extremely valuable in describing epitopes. New techniques like cryo-EM may provide an alternative to crystallography.


Asunto(s)
Alérgenos/química , Complejo Antígeno-Anticuerpo/química , Alérgenos/inmunología , Secuencia de Aminoácidos , Complejo Antígeno-Anticuerpo/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Inmunoglobulina E/inmunología , Estructura Secundaria de Proteína
15.
J Immunol ; 198(3): 1334-1344, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039303

RESUMEN

Der p 1 and Der f 1 are major allergens from Dermatophagoides pteronyssinus and D. farinae, respectively. An analysis of antigenic determinants on both allergens was performed by site-directed mutagenesis. The analysis was based on the x-ray crystal structures of the allergens in complex with Fab fragments of three murine mAbs that interfere with IgE Ab binding: the two Der p 1-specific mAbs 5H8 and 10B9, and the cross-reactive mAb 4C1. On one hand, selected residues in the epitopes for mAb 5H8 and mAb 4C1 were substituted with amino acids that resulted in impaired Ab binding to Der p 1. On the other hand, an epitope for the Der p 1-specific mAb 10B9, which partially overlaps with mAb 4C1, was created in Der f 1. The mutation of 1-3 aa residues in Der f 1 was sufficient to bind mAb 10B9. These residues form hydrogen bonds with CDRs of the Ab other than H CDR3. This observation unveils an exception to the dominant role of H CDR3 commonly observed in Ag recognition. Overall, this study resulted in the identification of important residues for mAb and IgE Ab recognition in group 1 mite allergens. This information can be used to engineer allergen mutants with reduced IgE Ab binding for immunotherapy.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Cisteína Endopeptidasas/inmunología , Epítopos , Inmunoglobulina E/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/química , Sitios de Unión de Anticuerpos , Reacciones Cruzadas , Epítopos/inmunología , Mutagénesis Sitio-Dirigida
16.
J Immunol ; 197(8): 3214-3224, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591323

RESUMEN

Rhinovirus (RV) is a major cause of common cold and an important trigger of acute episodes of chronic lung diseases. Antigenic variation across the numerous RV strains results in frequent infections and a lack of durable cross-protection. Because the nature of human CD4+ T cells that target RV is largely unknown, T cell epitopes of RV capsid proteins were analyzed, and cognate T cells were characterized in healthy subjects and those infected by intranasal challenge. Peptide epitopes of the RV-A16 capsid proteins VP1 and VP2 were identified by peptide/MHC class II tetramer-guided epitope mapping, validated by direct ex vivo enumeration, and interrogated using a variety of in silico methods. Among noninfected subjects, those circulating RV-A16-specific CD4+ T cells detected at the highest frequencies targeted 10 unique epitopes that bound to diverse HLA-DR molecules. T cell epitopes localized to conserved molecular regions of biological significance to the virus were enriched for HLA class I and II binding motifs, and constituted both species-specific (RV-A) and pan-species (RV-A, -B, and -C) varieties. Circulating epitope-specific T cells comprised both memory Th1 and T follicular helper cells, and were rapidly expanded and activated after intranasal challenge with RV-A16. Cross-reactivity was evidenced by identification of a common *0401-restricted epitope for RV-A16 and RV-A39 by tetramer-guided epitope mapping and the ability for RV-A16-specific Th1 cells to proliferate in response to their RV-A39 peptide counterpart. The preferential persistence of high-frequency RV-specific memory Th1 cells that recognize a limited set of conserved epitopes likely arises from iterative priming by previous exposures to different RV strains.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Infecciones por Picornaviridae/inmunología , Rhinovirus/inmunología , Adolescente , Adulto , Mapeo Epitopo , Humanos , Persona de Mediana Edad , Adulto Joven
17.
J Biol Chem ; 291(5): 2288-301, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26644466

RESUMEN

Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.


Asunto(s)
Alérgenos/química , Ácido Aspártico Endopeptidasas/química , Cucarachas/química , Proteínas de Insectos/química , Alérgenos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Ácido Aspártico Endopeptidasas/inmunología , Asma/etiología , Linfocitos T CD4-Positivos/citología , Cristalografía por Rayos X , Epítopos de Linfocito T/química , Humanos , Inmunoglobulina E/inmunología , Proteínas de Insectos/inmunología , Mutagénesis , Mutación , Pichia , Unión Proteica , Conformación Proteica , Células TH1/citología , Células Th2/citología
18.
Curr Allergy Asthma Rep ; 17(4): 25, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28421512

RESUMEN

PURPOSE OF REVIEW: This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS: The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.


Asunto(s)
Alérgenos/análisis , Asma/etiología , Cucarachas/inmunología , Exposición a Riesgos Ambientales/análisis , Animales , Niño , Humanos
19.
J Immunol ; 195(1): 307-16, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26026055

RESUMEN

Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1-specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partial overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1-10B9 and Der p 1-5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab-protein or Fab-peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen-Ab interactions in group 1 mite allergens. The surface data of Fab-protein and Fab-peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/química , Complejo Antígeno-Anticuerpo/química , Antígenos Dermatofagoides/química , Proteínas de Artrópodos/química , Cisteína Endopeptidasas/química , Fragmentos Fab de Inmunoglobulinas/química , Péptidos/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Antígenos Dermatofagoides/inmunología , Antígenos Dermatofagoides/aislamiento & purificación , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/aislamiento & purificación , Sitios de Unión , Cristalografía por Rayos X , Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/aislamiento & purificación , Epítopos/química , Epítopos/inmunología , Enlace de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/inmunología , Unión Proteica , Estructura Secundaria de Proteína , Pyroglyphidae/química , Pyroglyphidae/inmunología , Alineación de Secuencia
20.
Curr Allergy Asthma Rep ; 16(6): 43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27184001

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases. RECENT FINDINGS: Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment. Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.


Asunto(s)
Alérgenos/efectos adversos , Trastornos Respiratorios/etiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA