Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
2.
Metab Eng ; 80: 163-172, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778408

RESUMEN

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Asunto(s)
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Succinatos/metabolismo
3.
Appl Microbiol Biotechnol ; 104(9): 3981-3992, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32162091

RESUMEN

The filamentous fungus Aspergillus terreus has been successfully used for industrial production of itaconic acid (IA) for many years. The IA biosynthesis pathway has recently been characterized at a molecular genetic level as an IA gene cluster by a clone-based transcriptomic approach. The cluster consists of four genes, including genes for cis-aconitic acid decarboxylase (cadA), a predicted transcription factor (tf), a mitochondrial organic acid transporter (mttA) and an MFS (major facilitator superfamily) type transporter (mfsA). In this research, we performed expressed sequence tag (EST) analysis and systematic gene deletions to further investigate the role of those genes during IA biosynthesis in A. pseudoterreus ATCC32359. EST analysis showed a similar expression pattern among those four genes that were distinct from neighboring genes and further confirmed that they belong to the same biosynthesis cluster. Systematic gene deletion analysis demonstrated that tf, cadA, mttA and mfsA genes in the cluster are essential for IA production; deletion of any of them will either completely abolish the IA production or dramatically decrease the amount of IA produced. The tf gene plays a regulatory role in this cluster. Deletion of tf led to decreased expression levels of cadA, mttA and mfsA. More importantly, a significant amount of aconitic acid was detected in the cadA deletion strain but not in the other deletion strains. Therefore, by deleting only one gene, the cadA, we established a novel microbial host for the production of aconitic acid and other value-added chemicals from sugars in lignocellulosic biomass.


Asunto(s)
Aspergillus/genética , Vías Biosintéticas/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Familia de Multigenes , Succinatos/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Mutación
4.
Curr Genet ; 65(1): 269-282, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30121731

RESUMEN

The objective of this study was to disrupt the non-homologous end-joining (NHEJ) pathway gene (Lsku70Δ) and evaluate the effects of selected gene deletions related to glycogen synthesis (LsGSY1) and lipid degradation (LsMFE1, LsPEX10, and LsTGL4) on lipid production in the oleaginous yeast Lipomyces starkeyi. Disruption of the NHEJ pathway to reduce the rate of non-homologous recombination is a common approach used to overcome low-efficiency targeted deletion or insertion in various organisms. Here, the homologue of the LsKU70 gene was identified and disrupted in L. starkeyi NRRL Y-11558. The LsGSY1, LsMFE1, LsPEX10, LsTGL4, and LsURA3 genes were then replaced with a resistance marker in the Lsku70Δ strain and several site-specific insertions were assessed for targeted over-expression of selected genes. The targeted disruption efficiency of five selected genes (LsGSY1, LsMFE1, LsPEX10, LsTGL4, and LsURA3) was increased from 0 to 10% in the parent to 50-100% of transformants screened in the Lsku70Δ strain with 0.8-1.4 kb homologous flanking sequences, while the efficiency of site-specific gene insertion with the ß-glucuronidase reporter gene was 100% in the locus near the 3'-end coding (LsKU70) and non-coding (LsGSY1, LsMFE1, and LsPEX10) regions. Disruption of LsKU70 in isolation and in conjunction with LsGSY1, LsMFE1, LsPEX10, or LsTGL4 did not affect lipid production in L. starkeyi. Furthermore, ß-glucuronidase reporter gene activity was similar in strains containing site-specific targeted insertions. Therefore, over-expression of genes related to lipid synthesis at targeted loci can be further examined for improvement of total lipid production in L. starkeyi.


Asunto(s)
Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Autoantígeno Ku/genética , Lipomyces/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/genética , Proteínas Fúngicas/metabolismo , Rayos gamma , Autoantígeno Ku/metabolismo , Lípidos/biosíntesis , Lipomyces/clasificación , Lipomyces/metabolismo , Mutagénesis Sitio-Dirigida , Rayos Ultravioleta
5.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916559

RESUMEN

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Trichoderma/enzimología , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos , Proteínas de Transporte de Membrana/metabolismo , Transcripción Genética , Trichoderma/genética , Trichoderma/crecimiento & desarrollo
6.
BMC Genomics ; 17: 138, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911370

RESUMEN

BACKGROUND: Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. RESULTS: We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in ß-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. CONCLUSIONS: Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for ß-oxidation.


Asunto(s)
Metabolismo de los Lípidos , Nitrógeno/metabolismo , Yarrowia/metabolismo , Acetilcoenzima A/metabolismo , Ácido Cítrico/metabolismo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Metaboloma , Oxidación-Reducción , Fosforilación , Proteoma , Yarrowia/genética
7.
Life (Basel) ; 14(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38255730

RESUMEN

Microalgae are recognized for their versatility in providing renewable energy, biopharmaceuticals, and nutraceuticals, attributed to their sustainable, renewable, and cost-effective nature. Genetic engineering has proven highly effective in enhancing microalgae production. PCR-based genotyping is the primary method for screening genetically transformed microalgae cells. Recently, we developed a novel PCR method, namely Squash-PCR, and employed it for the molecular analysis of industrially important fungi and yeasts. In this study, we successfully implemented the Squash-PCR technique in 12 industrially significant algae species. This approach offers a quick and reliable means of obtaining DNA templates directly from squashed algal cells, eliminating the need for time-consuming and labor-intensive cultivation and genomic DNA extraction steps. Our results demonstrate the effectiveness of Squash-PCR in detecting and characterizing target genes of interest in 12 different algae species. Overall, this study establishes the Squash-PCR method as a valuable tool for molecular studies in algae, enabling researchers to rapidly screen and manipulate genetic traits in diverse algal species.

8.
Front Bioeng Biotechnol ; 12: 1356551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638323

RESUMEN

The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.

9.
BMC Plant Biol ; 13: 92, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23799904

RESUMEN

BACKGROUND: Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. RESULTS: We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. CONCLUSIONS: DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.


Asunto(s)
Desdiferenciación Celular , Populus/citología , Populus/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Citosina/metabolismo , Metilación de ADN , Epigenómica , Populus/fisiología , Transformación Genética
10.
Curr Opin Biotechnol ; 84: 103005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797483

RESUMEN

Many fungal species have been used industrially for production of biofuels and bioproducts. Developing strains with better performance in biomanufacturing contexts requires a systematic understanding of cellular metabolism. Genome-scale metabolic models (GEMs) offer a comprehensive view of interconnected pathways and a mathematical framework for downstream analysis. Recently, GEMs have been developed or updated for several industrially important fungi. Some of them incorporate enzyme constraints, enabling improved predictions of cell states and proteome allocation. Here, we provide an overview of these newly developed GEMs and computational methods that facilitate construction of enzyme-constrained GEMs and utilize flux predictions from GEMs. Furthermore, we highlight the pivotal roles of these GEMs in iterative design-build-test-learn cycles, ultimately advancing the field of fungal biomanufacturing.


Asunto(s)
Modelos Biológicos , Proteoma , Hongos/genética , Redes y Vías Metabólicas/genética
11.
Fungal Biol Biotechnol ; 10(1): 15, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422681

RESUMEN

BACKGROUND: Fungi have been utilized for centuries in medical, agricultural, and industrial applications. Development of systems biology techniques has enabled the design and metabolic engineering of these fungi to produce novel fuels, chemicals, and enzymes from renewable feedstocks. Many genetic tools have been developed for manipulating the genome and creating mutants rapidly. However, screening and confirmation of transformants remain an inefficient step within the design, build, test, and learn cycle in many industrial fungi because extracting fungal genomic DNA is laborious, time-consuming, and involves toxic chemicals. RESULTS: In this study we developed a rapid and robust technique called "Squash-PCR" to break open the spores and release fungal genomic DNA as a template for PCR. The efficacy of Squash-PCR was investigated in eleven different filamentous fungal strains. Clean PCR products with high yields were achieved in all tested fungi. Spore age and type of DNA polymerase did not affect the efficiency of Squash-PCR. However, spore concentration was found to be the crucial factor for Squash-PCR in Aspergillus niger, with the dilution of starting material often resulting in higher PCR product yield. We then further evaluated the applicability of the squashing procedure for nine different yeast strains. We found that Squash-PCR can be used to improve the quality and yield of colony PCR in comparison to direct colony PCR in the tested yeast strains. CONCLUSION: The developed technique will enhance the efficiency of screening transformants and accelerate genetic engineering in filamentous fungi and yeast.

12.
Biotechnol Biofuels Bioprod ; 16(1): 53, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991437

RESUMEN

BACKGROUND: Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS: In this study, the 3-HP ß-alanine pathway consisting of aspartate decarboxylase, ß-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the ß-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional ß-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS: The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.

13.
Nat Commun ; 14(1): 2461, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117207

RESUMEN

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Asunto(s)
Algoritmos , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Movilidad Iónica
14.
BMC Genomics ; 13: 27, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22251412

RESUMEN

BACKGROUND: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. RESULTS: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. CONCLUSIONS: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.


Asunto(s)
Cromosomas de las Plantas/genética , Citosina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Populus/genética , Epigénesis Genética , Populus/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia
15.
Antimicrob Agents Chemother ; 56(12): 6147-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22985881

RESUMEN

Peptide phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA mimics that bind cRNA and inhibit bacterial gene expression. The PPMO (RFF)(3)RXB-AcpP (where R is arginine, F, phenylalanine, X is 6-aminohexanoic acid, B is ß-alanine, and AcpP is acyl carrier protein) is complementary to 11 bases of the essential gene acpP (which encodes acyl carrier protein). The MIC of (RFF)(3)RXB-AcpP was 2.5 µM (14 µg/ml) in Escherichia coli W3110. The rate of spontaneous resistance of E. coli to (RFF)(3)RXB-AcpP was 4 × 10(-7) mutations/cell division. A spontaneous (RFF)(3)RXB-AcpP-resistant mutant (PR200.1) was isolated. The MIC of (RFF)(3)RXB-AcpP was 40 µM (224 µg/ml) for PR200.1. The MICs of standard antibiotics for PR200.1 and W3110 were identical. The sequence of acpP was identical in PR200.1 and W3110. PR200.1 was also resistant to other PPMOs conjugated to (RFF)(3)RXB or peptides with a similar composition or pattern of cationic and nonpolar residues. Genomic sequencing of PR200.1 identified a mutation in sbmA, which encodes an active transport protein. In separate experiments, a (RFF)(3)RXB-AcpP-resistant isolate (RR3) was selected from a transposome library, and the insertion was mapped to sbmA. Genetic complementation of PR200.1 or RR3 with sbmA restored susceptibility to (RFF)(3)RXB-AcpP. Deletion of sbmA caused resistance to (RFF)(3)RXB-AcpP. We conclude that resistance to (RFF)(3)RXB-AcpP was linked to the peptide and not the phosphorodiamidate morpholino oligomer, dependent on the composition or repeating pattern of amino acids, and caused by mutations in sbmA. The data further suggest that (RFF)(3)R-XB PPMOs may be transported across the plasma membrane by SbmA.


Asunto(s)
Antibacterianos/farmacología , ADN sin Sentido , Morfolinas/farmacología , Compuestos Organofosforados/farmacología , Péptidos/farmacología , Polímeros/farmacología , Alelos , Antibacterianos/síntesis química , Transporte Biológico , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Genoma Bacteriano , Luciferasas/biosíntesis , Luciferasas/genética , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Morfolinas/síntesis química , Compuestos Organofosforados/síntesis química , Péptidos/síntesis química , Polímeros/síntesis química , Análisis de Secuencia de ADN
16.
New Phytol ; 196(3): 713-725, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22861491

RESUMEN

• Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.


Asunto(s)
Genoma de Planta , Genómica/métodos , Desequilibrio de Ligamiento , Populus/genética , Metilación de ADN , ADN de Plantas/genética , Evolución Molecular , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Flujo Genético , Técnicas de Genotipaje , Geografía , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Recombinación Genética , Selección Genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
17.
Eukaryot Cell ; 10(6): 724-33, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21515825

RESUMEN

With the advent of high-throughput DNA sequencing, it is now straightforward and inexpensive to generate high-density small nucleotide polymorphism (SNP) maps. Here we combined high-throughput sequencing with bulk segregant analysis to expedite mutation mapping. The general map location of a mutation can be identified by a single backcross to a strain enriched in SNPs compared to a standard wild-type strain. Bulk segregant analysis simultaneously increases the likelihood of determining the precise nature of the mutation. We present here a high-density SNP map between Neurospora crassa Mauriceville-1-c (FGSC2225) and OR74A (FGSC2489), the strains most typically used by Neurospora researchers to carry out mapping crosses. We further have demonstrated the utility of the Mauriceville sequence and our approach by mapping the mutation responsible for the only existing temperature-sensitive (ts) cell cycle mutation in Neurospora, nuclear division cycle-1 (ndc-1). The single T-to-C point mutation maps to the gene encoding ornithine decarboxylase (ODC), spe-1 (NCU01271), and changes a Phe to a Ser residue within a highly conserved motif next to the catalytic site of the enzyme. By growth on spermidine and complementation with a wild-type spe-1 gene, we showed that the defect in spe-1 is responsible for the ts ndc-1 mutation. Based on our results, we propose changing ndc-1 to spe-1(ndc), which reflects that this mutation results in an ODC with a specific nuclear division defect.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Neurospora crassa/genética , Ornitina Descarboxilasa/genética , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Mapeo Cromosómico , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Mutación Missense , Ornitina Descarboxilasa/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Espermidina/metabolismo
18.
Metab Eng Commun ; 15: e00203, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065328

RESUMEN

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

19.
ACS Synth Biol ; 10(5): 1000-1008, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33915043

RESUMEN

Oleaginous yeast, such as Lipomyces starkeyi, are logical organisms for production of higher energy density molecules like lipids and terpenes. We demonstrate that transgenic L. starkeyi strains expressing an α-zingiberene synthase gene from lemon basil or Hall's panicgrass can produce up to 17 mg/L α-zingiberene in yeast extract peptone dextrose (YPD) medium containing 4% glucose. The transgenic strain was further examined in 8% glucose media with C/N ratios of 20 or 100, and YPD. YPD medium resulted in 59 mg/L α-zingiberene accumulation. Overexpression of selected genes from the mevalonate pathway achieved 145% improvement in α-zingiberene synthesis. Optimization of the growth medium for α-zingiberene production led to 15% higher titer than YPD medium. The final transgenic strain produced 700 mg/L α-zingiberene in fed-batch bioreactor culture. This study opens a new synthetic route to produce α-zingiberene or other terpenoids in L. starkeyi and establishes this yeast as a platform for jet fuel biosynthesis.


Asunto(s)
Ingeniería Genética/métodos , Lipomyces/genética , Lipomyces/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Medios de Cultivo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos , Glucosa/metabolismo , Hidrocarburos/metabolismo , Lípidos/biosíntesis , Lipomyces/crecimiento & desarrollo , Ácido Mevalónico/metabolismo , Microorganismos Modificados Genéticamente , Ocimum basilicum/enzimología , Ocimum basilicum/genética , Panicum/enzimología , Panicum/genética , Transducción de Señal/genética , Transgenes
20.
ACS Synth Biol ; 10(11): 2968-2981, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34636549

RESUMEN

Optimizing the metabolism of microbial cell factories for yields and titers is a critical step for economically viable production of bioproducts and biofuels. In this process, tuning the expression of individual enzymes to obtain the desired pathway flux is a challenging step, in which data from separate multiomics techniques must be integrated with existing biological knowledge to determine where changes should be made. Following a design-build-test-learn strategy, building on recent advances in Bayesian metabolic control analysis, we identify key enzymes in the oleaginous yeast Yarrowia lipolytica that correlate with the production of itaconate by integrating a metabolic model with multiomics measurements. To this extent, we quantify the uncertainty for a variety of key parameters, known as flux control coefficients (FCCs), needed to improve the bioproduction of target metabolites and statistically obtain key correlations between the measured enzymes and boundary flux. Based on the top five significant FCCs and five correlated enzymes, our results show phosphoglycerate mutase, acetyl-CoA synthetase (ACSm), carbonic anhydrase (HCO3E), pyrophosphatase (PPAm), and homoserine dehydrogenase (HSDxi) enzymes in rate-limiting reactions that can lead to increased itaconic acid production.


Asunto(s)
Yarrowia/metabolismo , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Teorema de Bayes , Biocombustibles/microbiología , Anhidrasas Carbónicas/metabolismo , Homoserina Deshidrogenasa/metabolismo , Ingeniería Metabólica/métodos , Pirofosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA