Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Biochem ; 119(7): 5985-5995, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575156

RESUMEN

Trypanosoma cruzi, the causative agent of Chagas' disease survives to DNA damage generated by ROS/RNS inside to their different hosts. In recent eukaryotes, oxidative DNA damage is repaired mainly by the Base Excision Repair (BER) pathway, being essential the apurinic/apyrimidinic endonuclease activity. Using a pTREX-gfp vector, the nucleotide sequence that encodes T. cruzi AP endonuclease TcAP1 (orthologue of human APE1) and a putative TcAP1 dominant negative (TcAP1DN), were transfectedand expressed in T. cruzi epimastigotes. TcAP1-GFP and TcAP1DN-GFP were expressed in those modified epimastigotes and found in the parasite nucleus. The endonucleases were purified under native conditions and the AP endonuclease activity was evaluated. While TcAP1 presents the expected AP endonuclease activity TcAP1DN does not. Moreover, TcAP1DN partially inhibits in vitro TcAP1 enzymatic activity. Transfected epimastigotes expressing TcAP1-GFP and TcAP1DN-GFP were differentiated to infective trypomastigotes. The infective parasites maintained both proteins (TcAP1-GFP and TcAP1DN-GFP) in the nucleus. The overexpression of TcAP1-GFP in epimastigotes and trypomastigotes increases the viability of both parasite forms when exposed to oxidative stress while the expression of TcAP1DN-GFP did not show any in vivo inhibitory effect, suggesting that endogenous TcAP1 constitutive expression overcomes the TcAP1DN inhibitory activity. Our results show that TcAP1 is important for trypomastigote survival under oxidative conditions similar to those found in infected mammalian cells, then increasing its permanence in the infected cells and the possibility of development of Chagas disease.


Asunto(s)
Enfermedad de Chagas/patología , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Estrés Oxidativo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Humanos , Estadios del Ciclo de Vida , Mutación , Oxidación-Reducción , Proteínas Protozoarias/genética , Homología de Secuencia , Trypanosoma cruzi/genética
2.
J Cell Biochem ; 118(7): 1722-1732, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27935092

RESUMEN

FLAP endonucleases (FEN) are involved both in DNA replication and repair by processing DNA intermediaries presenting a nucleotide flap using its phosphodiesterase activity. In spite of these important functions in DNA metabolism, this enzyme was not yet studied in Trypanosomatids. Trypanosoma cruzi, the ethiological agent of Chagas disease, presents two dividing cellular forms (epimastigote and amastigote) and one non-proliferative, infective form (trypomastigote). The parasite survives DNA damage produced by reactive species generated in its hosts. The activity of a T. cruzi FLAP endonuclease (TcFEN1) was determined in the three cellular forms of the parasite using a DNA substrate generated by annealing three different oligonucleotides to form a double-stranded DNA with a 5' flap in the middle. This activity showed optimal pH and temperature similar to other known FENs. The substrate cut by the flap endonuclease activity could be ligated by the parasite generating a repaired DNA product. A DNA flap endonuclease coding sequence found in the T. cruzi genome (TcFEN1) was cloned, inserted in parasite expression vectors and transfected to epimastigotes. The purified native recombinant protein showed DNA flap endonuclease activity. This endonuclease was found located in the parasite nucleus of transfected epimastigotes and its over-expression increased both parasite proliferation and survival to H2 O2 . The presence of a flap endonuclease activity in T. cruzi and its nuclear location are indicative of the participation of this enzyme in DNA processing of flap fragments during DNA replication and repair in this parasite of ancient evolutive origin. J. Cell. Biochem. 118: 1722-1732, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Endonucleasas de ADN Solapado/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Endonucleasas de ADN Solapado/genética , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Protozoarias/genética , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética
3.
Antioxidants (Basel) ; 13(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39061870

RESUMEN

While cytostatic chemotherapy targeting DNA is known to induce genotoxicity, leading to cell cycle arrest and cytokine secretion, the impact of these drugs on fibroblast-epithelial cancer cell communication and metabolism remains understudied. Our research focused on human breast fibroblast RMF-621 exposed to nonlethal concentrations of cisplatin and doxorubicin, revealing reduced proliferation, diminished basal and maximal mitochondrial respirations, heightened mitochondrial ROS and lactate production, and elevated MCT4 protein levels. Interestingly, RMF-621 cells enhanced glucose uptake, promoting lactate export. Breast cancer cells MCF-7 exposed to conditioned media (CM) from drug-treated stromal RMF-621 cells increased MCT1 protein levels, lactate-driven mitochondrial respiration, and a significantly high mitochondrial spare capacity for lactate. These changes occurred alongside altered mitochondrial respiration, mitochondrial membrane potential, and superoxide levels. Furthermore, CM with doxorubicin and cisplatin increased migratory capacity in MCF-7 cells, which was inhibited by MCT1 (BAY-8002), glutamate dehydrogenase (EGCG), mitochondrial pyruvate carrier (UK5099), and complex I (rotenone) inhibitors. A similar behavior was observed in T47-D and ZR-75-1 breast cancer cells. This suggests that CM induces metabolic rewiring involving elevated lactate uptake to sustain mitochondrial bioenergetics during migration. Treatment with the mitochondrial-targeting antioxidant mitoTEMPO in RMF-621 and the addition of an anti-CCL2 antibody in the CM prevented the promigratory MCF-7 phenotype. Similar effects were observed in THP1 monocyte cells, where CM increased monocyte recruitment. We propose that nonlethal concentrations of DNA-damaging drugs induce changes in the cellular environment favoring a promalignant state dependent on mitochondrial bioenergetics.

4.
Integr Comp Biol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025801

RESUMEN

Melanin is an essential product that plays an important role in innate immunity in a variety of organisms across the animal kingdom. Melanin synthesis is performed by many organisms using the tyrosine metabolism pathway, a general pathway that utilizes a type-three copper oxidase protein, called PO-candidates (phenoloxidase candidates). While melanin synthesis is well characterized in organisms like arthropods and humans, it is not as well understood in non-model organisms such as cnidarians. With the rising anthropomorphic climate change influence on marine ecosystems, cnidarians, specifically corals, are under an increased threat of bleaching and disease. Understanding innate immune pathways, such as melanin synthesis, is vital to gaining insights into how corals may be able to fight these threats. In this study, we use comparative bioinformatic approaches to provide a comprehensive analysis of genes involved in tyrosine-mediated melanin synthesis in cnidarians. Eighteen PO-candidates representing five phyla were studied to identify their evolutionary relationship. Cnidarian species were most similar to chordates due to domain presents in the amino acid sequences. From there, functionally conserved domains in coral proteins were identified in a coral disease dataset. Five stony corals exposed to stony coral tissue loss disease were leveraged to identify eighteen putative tyrosine metabolism genes, genes with functionally conserved domains to their Homo sapiens counterpart. To put this pathway the context of coral health, putative genes were correlated to melanin concentration from tissues of stony coral species in the disease exposure dataset. In this study, tyrosinase was identified in stony corals as correlated to melanin concentrations and likely plays a key role in immunity as a resistance trait. In addition, stony coral genes were assigned to all modules within the tyrosine metabolism pathway, indicating an evolutionary conservation of this pathway across phyla. Overall, this study provides a comprehensive analysis of the genes involved in tyrosine-mediated melanin synthesis in cnidarians.

5.
Metabolites ; 11(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34357326

RESUMEN

Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work was to investigate the possible functional link between these two processes. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material, to which matrix molecules were covalently linked. We evaluated metabolite transport in stromal cells using two different FRET (Fluorescence Resonance Energy Transfer) nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response was correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote metabolic reprograming and also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming, and cancer malignancy.

6.
J Med Microbiol ; 66(4): 517-525, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28463664

RESUMEN

PURPOSE: Pharyngo-amygdalitis is the most common infection caused by Streptococcus pyogenes (S. pyogenes). Reinfection with strains of different M types commonly occurs. However, a second infection with a strain of the same M type can still occur and is referred to as recurrence. We aimed to assess whether recurrence of S. pyogenes could be associated to erythromycin resistance, biofilm formation or surface adhesins like fibronectin-binding proteins and pilus proteins, both located in the fibronectin-binding, collagen-binding, T-antigen (FCT) region. METHODOLOGY: We analyed clinical isolates of S. pyogenes obtained from children with multiple positive cultures of throat swabs. We analysed potential associations between M types, clonal patterns, biofilm production and FCT types with their capacity of producing a recurrent infection. We genetically defined recurrence as an infection with the same M type (same strain) and reinfection as an infection with a different M type. RESULTS: No differences were observed between recurrent and reinfection isolates in relation to erythromycin resistance, presence and number of domains of prtF1 gene, and biofilm formation capacity; the only significant difference was the higher frequency of FCT-4 type among recurrent isolates. However, when all the factors that could contribute to recurrence (erythromycin resistance, biofilm production, presence of prtF1 gene and FCT-4 type) were analysed together, we observed that recurrent isolates have a higher number of factors than reinfection isolates. CONCLUSIONS: Recurrence seems not to be associated with biofilm formation. However, pili and fibronectin-binding proteins could be associated with recurrence because FCT-4 isolates which harbour two fibronectin-binding proteins are more frequent among recurrent isolates.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Faringitis/microbiología , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Adhesinas Bacterianas/genética , Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Eritromicina/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Faringitis/tratamiento farmacológico , Recurrencia , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/aislamiento & purificación
7.
PLoS One ; 11(6): e0157270, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27284968

RESUMEN

Trypanosoma cruzi, the etiological agent of Chagas' disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing.


Asunto(s)
Enfermedad de Chagas/parasitología , ADN Glicosilasas/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Daño del ADN , ADN Glicosilasas/química , ADN Glicosilasas/genética , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Estrés Oxidativo , Conformación Proteica , Ratas , Alineación de Secuencia , Timina/análogos & derivados , Timina/metabolismo , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA