Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phytochem Anal ; 35(4): 690-707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212263

RESUMEN

INTRODUCTION: This research explores sustainable applications for waste generated from fenugreek (Trigonella foenum-graecum), a plant with both nutritional and medicinal uses. The study specifically targets waste components as potential sources of nutrients and bioactive compounds. OBJECTIVES: The focus is to conduct detailed metabolic profiling of fenugreek waste, assess its anti-inflammatory properties by studying its cyclooxygenase (COX) inhibitory effect, and correlate this effect to the metabolite fingerprint. MATERIALS AND METHODS: Ethanolic extracts of fenugreek fruit pericarp and a combination of leaves and stems were subjected to untargeted metabolic profiling using liquid chromatography-mass spectrometry integrated with online database searches and molecular networking as an effective dereplication strategy. The study also scrutinized the COX inhibitory capabilities of these extracts and saponin-rich fractions prepared therefrom. Molecular docking was employed to investigate the specific interactions between the identified saponins and COX enzymes. RESULTS: The analysis led to the annotation of 81 metabolites, among which saponins were predominant. The saponin-rich fraction of the fruit pericarp extract displayed the strongest COX-II inhibitory activity in the in vitro inhibition assay (IC50 value of 81.64 ± 3.98 µg/mL). The molecular docking study supported the selectivity of the identified saponins towards COX-II. The two major identified saponins, namely, proto-yamogenin 3-O-[deoxyhexosyl (1 → 2)] [hexosyl (1 → 4)] hexoside 26-O-hexoside and trigofenoside A, were predicted to have the highest affinity to the COX-II receptor site. CONCLUSION: In the present study, we focused on the identification of COX-II inhibitory saponins in fenugreek waste through an integrated approach. The findings offer valuable insights into potential anti-inflammatory and cancer chemoprotective applications of fenugreek waste.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Metabolómica , Simulación del Acoplamiento Molecular , Saponinas , Espectrometría de Masas en Tándem , Trigonella , Trigonella/química , Saponinas/química , Saponinas/farmacología , Saponinas/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Metabolómica/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ciclooxigenasa 2/metabolismo
2.
J Sep Sci ; 45(18): 3614-3623, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866669

RESUMEN

Protein profiling of major bovine milk proteins (i.e., whey and casein proteins) is of great interest in food science and technology. This complex set of protein proteoforms may vary with breed, genetics, lactation stage, health, and nutritional status of the animal. Current routine methods for bovine milk protein profiling at the intact level are typically based on capillary electrophoresis-ultraviolet, which does not allow confirming unequivocally the identity of the separated proteins. As an alternative, in this study, we describe for the first time a novel and simple capillary electrophoresis-mass spectrometry method in positive electrospray ionization mode. Under the optimized conditions, capillary electrophoresis-mass spectrometry allowed the separation and identification at the intact level of major bovine milk whey and casein proteins in less than 15 min. Furthermore, high-resolution mass spectrometry confirmed its importance in the reliable characterization of bovine milk protein proteoforms, especially those with slight molecular mass differences, such as ß-casein A1 and A2, which are relevant to unequivocally identify milk with specific ß-casein compositions (e.g., A2A2 milk, which is widely known as A2 milk). This differentiation was not possible by matrix-assisted laser desorption/ionization mass spectrometry, which provided rapidly and easily a rich but less accurate fingerprint of bovine milk proteins due to the lower mass resolution.


Asunto(s)
Caseínas , Proteínas de la Leche , Animales , Caseínas/química , Electroforesis Capilar/métodos , Femenino , Leche/química , Proteínas de la Leche/análisis , Proteínas de la Leche/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
J Proteome Res ; 20(3): 1666-1675, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33560857

RESUMEN

With 28 potential N-glycosylation sites, human carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular mass can be attributed to its carbohydrates. CEA is often overexpressed and released by many solid tumors, including colorectal carcinomas. CEA displays an impressive heterogeneity and variability in sugar content; however, site-specific distribution of carbohydrate structures has not been reported so far. The present study investigated CEA samples purified from human colon carcinoma and human liver metastases and enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage was achieved by a multienzymatic digestion approach with specific enzymes, such as trypsin, endoproteinase Glu-C, and the nonspecific enzyme, Pronase, followed by analysis using sheathless CE-MS/MS. In total, 893 different N-glycopeptides and 128 unique N-glycan compositions were identified. Overall, a great heterogeneity was found both within (micro) and in between (macro) individual N-glycosylation sites. Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic tumor in regard to branching, bisection, sialylation, and fucosylation. Those features, if further investigated in a targeted manner, may pave the way toward improved diagnostics and monitoring of colorectal cancer progression and recurrence. Raw mass spectrometric data and Skyline processed data files that support the findings of this study are available in the MassIVE repository with the identifier MSV000086774 [DOI: 10.25345/C5Z50X].


Asunto(s)
Antígeno Carcinoembrionario , Antígeno Carcinoembrionario/metabolismo , Electroforesis Capilar , Glicopéptidos/metabolismo , Glicosilación , Humanos , Recurrencia Local de Neoplasia , Espectrometría de Masas en Tándem
4.
Electrophoresis ; 37(9): 1220-31, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26842820

RESUMEN

In this paper, an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using magnetic beads (MBs) is described for the analysis of serum transthyretin (TTR), which is a protein related to different types of amyloidosis. First, purification of TTR from serum was investigated by off-line immunoprecipitation and CE-MS. The suitability of three Protein A (ProA) MBs (Protein A Ultrarapid Agarose(TM) (UAPA), Dynabeads(®) Protein A (DyPA) and SiMAG-Protein A (SiPA) and AffiAmino Ultrarapid Agarose(TM) (UAAF) MBs to prepare an IA sorbent with a polyclonal antibody (Ab) against TTR, was studied. In all cases, results were repeatable and it was possible the identification and the quantitation of the relative abundance of the six most abundant TTR proteoforms. Although recoveries were the best with UAPA MBs, UAAF MBs were preferred for on-line immunopurification because Ab was not eluted from the MBs. Under the optimized conditions with standards in IA-SPE-CE-MS, microcartridge lifetime (>20 analyses/day) and repeatability (2.9 and 4.3% RSD for migration times and peak areas) were good, the method was linear between 5 and 25 µg/mL and LOD was around 1 µg/mL (25 times lower than by CE-MS, ≈25 µg/mL). A simple off-line sample pretreatment based on precipitation of the most abundant proteins with 5% (v/v) of phenol was necessary to clean-up serum samples. The potential of the on-line method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was demonstrated analysing serum samples from healthy controls and FAP-I patients.


Asunto(s)
Electroforesis Capilar/métodos , Separación Inmunomagnética/métodos , Espectrometría de Masas/métodos , Prealbúmina/análisis , Humanos , Límite de Detección , Modelos Lineales , Polineuropatías , Prealbúmina/aislamiento & purificación , Reproducibilidad de los Resultados
5.
Electrophoresis ; 37(5-6): 795-808, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685060

RESUMEN

In this work, an untargeted metabolomic approach based on sensitive analysis by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild-type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18 -SPE-CE-MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow-up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters.


Asunto(s)
Biomarcadores/sangre , Electroforesis Capilar/métodos , Enfermedad de Huntington/sangre , Metabolómica/métodos , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/metabolismo , Espectrometría de Masas/métodos , Metaboloma , Ratones , Ratones Transgénicos , Extracción en Fase Sólida/métodos
6.
Electrophoresis ; 36(11-12): 1265-73, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25820240

RESUMEN

Transthyretin (TTR) is known to misfold and aggregate, causing different types of amyloidosis. Familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, is associated with a TTR variant that presents a single amino acid substitution of valine for methionine at position 30 (Met 30). To screen for TTR-related amyloidosis rapidly and reliably, we have developed a novel procedure based on the analysis of monomers from the homotetrameric protein (∼56 kDa). First, we established a CZE-ESI-TOF-MS method to detect wild-type (normal) TTR with or without several PTMs, as well as an extra minor isoform in TTR standard solutions. Later, a sample pretreatment based on immunoprecipitation (IP) and centrifugal filtration was optimized to analyze serum samples from healthy controls and FAP-I patients (including an asymptomatic patient, a symptomatic patient, a liver-transplanted patient with the specific mutation, and a patient originally without the mutation who received a liver transplant from an FAP-I patient (iatrogenic FAP-I)). The mutant TTR (Met 30) variant with a relative molecular mass 32.07 higher than the wild-type TTR was found in the asymptomatic, the symptomatic and the iatrogenic FAP-I patients, who interestingly also presented the same concentration ratio between both variants of TTR (abnormal and normal). In contrast, as in the healthy controls, the abnormal TTR variant was not detected in the liver-transplanted patient with the specific mutation, which confirms the effectiveness of the treatment. The proposed procedure could be regarded as a suitable screening system for individuals with suspected TTR amyloidosis, and to gain insight into TTR structure, to understand the mechanism underlying the disease.


Asunto(s)
Amiloidosis Familiar/sangre , Electroforesis Capilar/métodos , Polineuropatías/sangre , Prealbúmina/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Estudios de Casos y Controles , Humanos
7.
Foods ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928847

RESUMEN

Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry.

8.
Food Res Int ; 180: 114053, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395547

RESUMEN

Turnip (Brassica rapa var rapa L.) leaves are a rich source of versatile bioactive phytochemicals with great potential in the food and herbal industries. However, the effect of drying on its constituents has never been studied before. Hereto, three drying techniques were compared, namely, lyophilization (LY), vacuum oven (VO), and shade drying (SD). Chemical profiling utilizing liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) combined with chemometrics showed the different impacts of the drying methods on the phytochemical composition of the alcoholic leaf extracts. Unsupervised principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) of the LC-QTOF-MS/MS data showed distinct distant clustering across the three drying techniques. Loading plots and VIP scores demonstrated that sinapic acid, isorhamnetin glycosides, and sinapoyl malate were key markers for LY samples. Meanwhile, oxygenated and polyunsaturated fatty acids were characteristic for SD samples and oxygenated polyunsaturated fatty acids and verbascoside were characteristic for VO samples. LY resulted in the highest total phenolics (TP) and total flavonoid (TF) contents followed by SD and VO. LY and SD samples had much higher antioxidant activity than VO measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and iron metal chelation assays. According to the anticancer activity, the drying methods were ranked in descending order as SD > LY â‰« VO when tested against colon, breast, liver, and lung cancer cell lines. Among the identified compounds, flavonoids and omega-3 fatty acids were key metabolites responsible for the anticancer activity as revealed by partial least squares (PLS) regression and correlation analyses. In conclusion, compared to LY, SD projected out as a cost-effective drying method without compromising the phytochemical and biological activities of Brassica greens. The current findings lay the foundation for further studies concerned with the valorization of Brassica greens.


Asunto(s)
Antioxidantes , Brassica , Antioxidantes/análisis , Espectrometría de Masas en Tándem , Brassica/metabolismo , Quimiometría , Cromatografía Liquida , Flavonoides/análisis , Fenoles/análisis , Fitoquímicos/farmacología , Ácidos Grasos Insaturados
9.
BMC Complement Med Ther ; 24(1): 164, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641582

RESUMEN

BACKGROUND: Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS: The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS: In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION: This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.


Asunto(s)
Acinetobacter baumannii , Brassica , Brassica/química , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Espectrometría de Masas en Tándem , Bacterias Gramnegativas , Bacterias Grampositivas , Fitoquímicos/farmacología , Lipasa
10.
PLoS One ; 19(5): e0301504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728303

RESUMEN

In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.


Asunto(s)
Caenorhabditis elegans , Animales , Ratones , Porcinos , Caenorhabditis elegans/metabolismo , Hidrólisis , Plasma/metabolismo , Citocinas/metabolismo , Antioxidantes/metabolismo , Lipopolisacáridos , Antiinflamatorios/farmacología
11.
J Sep Sci ; 36(24): 3896-902, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24151123

RESUMEN

Protein precipitation and centrifugal filtration are well-established methods for concentrating and purifying peptides with a low relative molecular mass (Mr) from human blood plasma before proteomic and peptidomic studies using high-performance separation techniques, but there is little information on peptide recoveries. Here, we evaluate acetonitrile precipitation followed by a range of centrifugal filtration conditions for the analysis of low Mr peptides in human blood plasma before CE­MS and SPE coupled online to CE­MS. Three opioid peptides were used as model compounds, that is, dynorphin A 1­7, endomorphin 1, and methionine enkephalin and 3, 10, and 30 K Mr cut-off cellulose acetate filters (Amicon® Ultra-0.5) and 10 K Mr cut-off polyethersulfone filters (Vivaspin® 500) were studied. Unexpectedly, recoveries and repeatability were only optimum after passivating the 10 K Mr cut-off cellulose acetate filters with PEG to avoid peptide adsorption on the inner walls of the plastic sample reservoir.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Péptidos/sangre , Péptidos/aislamiento & purificación , Extracción en Fase Sólida , Adsorción , Electroforesis Capilar , Humanos , Espectrometría de Masas , Peso Molecular , Péptidos/química , Propiedades de Superficie
12.
Anal Chim Acta ; 1256: 341149, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37037631

RESUMEN

On-line aptamer affinity solid-phase extraction direct mass spectrometry (AA-SPE-MS) is presented for the rapid purification, preconcentration, and characterization of α-synuclein (α-syn), which is a protein biomarker related to Parkinson's disease. Valve-free AA-SPE-MS is easily implemented using the typical SPE microcartridges and instrumental set-up necessary for on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS). The essential requirement is substituting the application of the separation voltage by a pressure of 100 mbar for mobilization of the eluted protein through the capillary towards the mass spectrometer. Under optimized conditions with recombinant α-syn, repeatability is good in terms of migration time and peak area (percent relative standard deviation (%RSD) values (n = 3) are 1.3 and 6.6% at 1 µg mL-1, respectively). The method is satisfactorily linear between 0.025 and 5 µg mL-1 (R2 > 0.986), and limit of detection (LOD) is 0.02 µg mL-1 (i.e. 1000, 500, and 10 times lower than by CE-MS, direct MS, and AA-SPE-CE-MS, respectively). The established AA-SPE-MS method is further compared with AA-SPE-CE-MS, including for the analysis of α-syn in blood. The comparison discloses the advantages and disadvantages of AA-SPE-MS for the rapid and sensitive targeted analysis of protein biomarkers in biological fluids.


Asunto(s)
Oligonucleótidos , alfa-Sinucleína , Espectrometría de Masas/métodos , Límite de Detección , Extracción en Fase Sólida/métodos , Biomarcadores
13.
Food Chem ; 398: 133895, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35986991

RESUMEN

Quinoa is an Andean grain that is attracting attention worldwide as a high-quality protein-rich food. Nowadays, quinoa foodstuffs are susceptible to adulteration with cheaper cereals. Therefore, there is a need to develop novel methodologies for protein characterization of quinoa. Here, we first developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method to obtain characteristic mass spectra of protein extracts from 4 different commercial quinoa grains, which group different varieties marketed as black, red, white (from Peru) and royal (white from Bolivia). Then, data preprocessing and peak detection with MALDIquant allowed detecting 47 proteins (being 30 tentatively identified), the intensities of which were considered as fingerprints for multivariate data analysis. Finally, classification by partial least squares-discriminant analysis (PLS-DA) was excellent, and 34 out of the 47 proteins were critical for differentiation, confirming the potential of the methodology to obtain a reliable classification of quinoa grains based on protein fingerprinting.


Asunto(s)
Chenopodium quinoa , Quimiometría , Chenopodium quinoa/química , Análisis Discriminante , Análisis Multivariante , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
14.
Foods ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36673481

RESUMEN

Quinoa proteins are attracting global interest for their wide amino acid profile and as a promising source for the development of biomedical treatments, including those against immune-mediated diseases. However, information about the bioactivity of quinoa proteins is scarce. In this study, a quinoa grain proteome map obtained by label-free mass spectrometry-based shotgun proteomics was investigated for the identification of quinoa grain proteins with potential immunonutritional bioactivities, including those related to cancer. After carefully examining the sequence similarities of the 1211 identified quinoa grain proteins against already described bioactive proteins from other plant organisms, 71, 48, and 3 of them were classified as antimicrobial peptides (AMPs), oxidative stress induced peptides (OSIPs), and serine-type protease inhibitors (STPIs), respectively, suggesting their potential as immunomodulatory, anti-inflammatory, and anticancer agents. In addition, data interpretation using Venn diagrams, heat maps, and scatterplots revealed proteome similarities and differences with respect to the AMPs, OSIPs, and STPIs, and the most relevant bioactive proteins in the predominant commercial quinoa grains (i.e., black, red, white (from Peru), and royal (white from Bolivia)). The presented proteomics data mining strategy allows easy screening for potentially relevant quinoa grain proteins and commercial classes for immunonutrition, as a basis for future bioactivity testing.

15.
Food Res Int ; 172: 113178, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689928

RESUMEN

This study comprehensively characterized the metabolite profiles of six lettuce varieties and established the correlation between the elucidated profiles and their antivirulence effects. A total of 195 metabolites were annotated using LC-QTOF-MS/MS metabolomics assisted by molecular networking and integrated with chemometrics. Red varieties (red longifolia and lolla rosa) demonstrated higher chlorogenic and chicoric acids suggesting their antioxidant properties. In parallel, amino acids and disaccharides were enriched in romaine longifolia rationalizing its palatable taste and nutritional potential, while crispa, capitata, and lolla bionda presented a high ß-carboline alkaloid content. The antibacterial and antihemolytic potential of all varieties against methicillin-sensitive and methicillin-resistant Staphylococcus aureus was assessed and validated by prominent downregulation of α-hemolysin transcriptional levels in both strains. Moreover, correlation analysis revealed sesquiterpenes, ß-carboline alkaloids, amino acids, and oxy-fatty acids as the main bioactives. Results emphasize lettuce significance as a functional food and nutraceutical source, and highlight varieties naturally rich in antibacterial agents to adapt breeding programs.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Lactuca , Quimiometría , Espectrometría de Masas en Tándem , Fitomejoramiento , Aminoácidos , Carbolinas , Cromatografía Liquida
16.
Food Res Int ; 168: 112742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120197

RESUMEN

Plant extracts have recently received increased attention as alternative sources of antimicrobial agents in the fight against multidrug-resistant bacteria. Non-targeted metabolomics liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, molecular networking, and chemometrics were used to evaluate the metabolic profiles of red and green leaves of two Brassica juncea (L.) varieties, var. integrifolia (IR and IG) and var. rugosa (RR and RG), as well as to establish a relationship between the elucidated chemical profiles and antivirulence activity. In total, 171 metabolites from different classes were annotated and principal component analysis revealed higher levels of phenolics and glucosinolates in var. integrifolia leaves and color discrimination, whereas fatty acids were enriched in var. rugosa, particularly trihydroxy octadecadienoic acid. All extracts demonstrated significant antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, presenting the IR leaves the highest antihemolytic activity against S. aureus (99 % inhibition), followed by RR (84 %), IG (82 %), and RG (37 %) leaves. Antivirulence of IR leaves was further validated by reduction in alpha-hemolysin gene transcription (∼4-fold). Using various multivariate data analyses, compounds positively correlated to bioactivity, primarily phenolic compounds, glucosinolates, and isothiocyanates, were also identified.


Asunto(s)
Planta de la Mostaza , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Staphylococcus aureus , Glucosinolatos/farmacología , Glucosinolatos/análisis , Fenoles/análisis , Verduras
17.
Methods Mol Biol ; 2531: 77-91, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941480

RESUMEN

Peptide mapping is a routine procedure for protein characterization in proteomics. This bottom-up analysis requires digestion of proteins into peptides before liquid chromatography- or capillary zone electrophoresis-mass spectrometry (LC-MS or CZE-MS, respectively). Proteins are usually digested off-line using proteolytic enzymes, typically trypsin, in solution or immobilized on appropriate supports. As an alternative, here we describe on-line immobilized enzyme microreactor capillary zone electrophoresis-mass spectrometry (IMER-CZE-MS) for a straightforward, rapid, and efficient protein digestion followed by separation, detection, and characterization of the generated peptides.


Asunto(s)
Electroforesis Capilar , Enzimas Inmovilizadas , Electroforesis Capilar/métodos , Enzimas Inmovilizadas/química , Espectrometría de Masas , Mapeo Peptídico , Péptidos/metabolismo , Proteínas , Tripsina/química
18.
Food Chem ; 341(Pt 1): 128207, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33035861

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is an andean grain with exceptional nutritional properties that has been progressively introduced in western countries as a protein-rich super food with a broad amino acid spectrum. Quinoa is consumed as whole grain, but it is also milled to produce high-value flour, which is susceptible to adulteration. Therefore, there is a growing interest in developing novel analytical methods to get further information about quinoa at the chemical level. In this study, we developed a rapid and simple capillary electrophoresis-ultraviolet absorption diode array detection (CE-UV-DAD) method to obtain characteristic multiwavelength electrophoretic profiles of soluble protein extracts from different quinoa grain varieties. Then, advanced chemometric methods (i.e. multivariate curve resolution alternating least squares, MCR-ALS, followed by principal component analysis, PCA, and partial least squares discriminant analysis, PLS-DA) were applied to deconvolute the components present in the electropherograms and classify the quinoa varieties according to their differential protein composition.


Asunto(s)
Chenopodium quinoa/química , Electroforesis Capilar/métodos , Análisis de los Alimentos/métodos , Mapeo Peptídico/métodos , Mapeo Peptídico/estadística & datos numéricos , Análisis Discriminante , Electroforesis Capilar/estadística & datos numéricos , Análisis de los Alimentos/estadística & datos numéricos , Análisis de los Mínimos Cuadrados , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Análisis de Componente Principal , Rayos Ultravioleta
19.
Food Chem ; 363: 130250, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34120052

RESUMEN

Quinoa seed proteins are of prime importance in human nutrition and in plant breeding for cultivar identification and improvement. In this study, proteins from seeds of black, red, white quinoa from Peru and white quinoa from Bolivia (also known as royal) were extracted, digested and analyzed by nano-liquid chromatography coupled to Orbitrap tandem mass spectrometry (LC-MS/MS). The raw mass spectra data were processed for identification and label-free quantification (LFQ) using MaxQuant/Andromeda against a specific quinoa database from The National Center for Biotechnology Information (NCBI). In total, 1,211 quinoa proteins (85 were uncharacterized) were identified. Inspection and visualization using Venn diagrams, heat maps and Gene Ontology (GO) graphs revealed proteome similarities and differences between the four varieties. The presented data provides the most comprehensive experimental quinoa seed proteome map existing to date in the literature, as a starting point for more specific characterization and nutritional studies of quinoa and quinoa-containing foodstuff.


Asunto(s)
Chenopodium quinoa , Proteoma , Cromatografía Liquida , Fitomejoramiento , Proteómica , Semillas/genética , Espectrometría de Masas en Tándem
20.
J Chromatogr A ; 1631: 461548, 2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-32971474

RESUMEN

Growth hormone-releasing hormone and its analogues sermorelin, tesamorelin and CJC-1295 are included in the prohibited list of the World Antidoping Agency. These target peptides are found at very low concentrations in urine (at the pg/mL level). For this reason, hyphenated enrichment and purification steps prior to mass spectrometric detection are required. Among different strategies, immunopurification based on magnetic beads is an excellent alternative, as it offers improved selectivity when the immunoreactivity and orientation of the antibody are optimum and non-specific adsorption is minimized. However, choosing the magnetic bead surface functionalities that provide the best recoveries is not so straightforward. In this work, we have evaluated the suitability of magnetic beads with different supports, binding capacities and affinity chemistries prior analysis of human urine samples by liquid chromatography coupled to high resolution mass spectrometry using a Quadrupole-Orbitrap instrument. After optimization of the immunopurification protocol with the magnetic beads that provided better recoveries, the method was fully validated and found to be adequate considering the parameters specificity, intra- and inter-day precision (lower than 15 and 25%, respectively), matrix effect, limit of detection (0.2 ng/mL) and limit of identification (0.5 ng/mL).


Asunto(s)
Doping en los Deportes , Detección de Abuso de Sustancias , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Hormona Liberadora de Hormona del Crecimiento , Humanos , Límite de Detección , Fenómenos Magnéticos , Espectrometría de Masas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA