Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 35(37): 12792-812, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377467

RESUMEN

Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. SIGNIFICANCE STATEMENT: An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/fisiología , Conducta Sexual Animal/fisiología , Animales , Animales Modificados Genéticamente , Apetito/efectos de los fármacos , Apetito/fisiología , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Femenino , Fenclonina/farmacología , Vuelo Animal/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/fisiología , Canales Iónicos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Antagonistas de la Serotonina/farmacología , Conducta Sexual Animal/efectos de los fármacos , Sueño/efectos de los fármacos , Sueño/fisiología , Procesos Estocásticos , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/fisiología , Temperatura
2.
Curr Biol ; 32(22): 4900-4913.e4, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36327980

RESUMEN

Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.


Asunto(s)
Proteínas de Drosophila , Cuerpos Pedunculados , Animales , Cuerpos Pedunculados/fisiología , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Reacción de Prevención/fisiología , Memoria a Corto Plazo/fisiología
3.
Nat Commun ; 12(1): 1932, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771998

RESUMEN

The physical distance between presynaptic Ca2+ channels and the Ca2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Conducta Apetitiva/fisiología , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Interneuronas/metabolismo , Interneuronas/fisiología , Proteínas de la Membrana/genética , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Sinapsis/metabolismo , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
4.
J Mol Neurosci ; 38(2): 178-81, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18792810

RESUMEN

Schizophrenia is a complex genetic disorder to which genetic variation in the glutamatergic signaling pathways is believed to play a substantial role in the etiology of the disease. Association studies have implicated the N-methyl-D-aspartate receptor subunit gene, GRIN1, as a candidate gene for schizophrenia. In this report, we used a case control study to establish the possible association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia in an Iranian cohort of 200 unrelated patients and 200 controls. The allelic and genotypic frequencies of the polymorphism were determined using polymerase chain reaction restriction fragment length polymorphism. Data analysis using logistic regression and the Mantel-Haenszel chi-square test revealed a strong association between the G1001C polymorphism and schizophrenia (CG genotype: odds ratio (OR) = 2.12, 95% confidence interval (CI) 1.34-3.48, P = 0.001 and CC genotype: OR = 29.10, 95% CI 3.40-565.78, P < 0.001). Furthermore, the C allele is significantly associated with an increasing risk of schizophrenia.


Asunto(s)
Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo Genético , Regiones Promotoras Genéticas , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética , Adulto , Estudios de Casos y Controles , Etnicidad/genética , Frecuencia de los Genes , Genotipo , Humanos , Irán , Persona de Mediana Edad , Esquizofrenia/fisiopatología , Análisis de Secuencia de ADN
5.
Elife ; 72018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29345616

RESUMEN

Loss of the sense of smell is among the first signs of natural aging and neurodegenerative diseases such as Alzheimer's and Parkinson's. Cellular and molecular mechanisms promoting this smell loss are not understood. Here, we show that Drosophila melanogaster also loses olfaction before vision with age. Within the olfactory circuit, cholinergic projection neurons show a reduced odor response accompanied by a defect in axonal integrity and reduction in synaptic marker proteins. Using behavioral functional screening, we pinpoint that expression of the mitochondrial reactive oxygen scavenger SOD2 in cholinergic projection neurons is necessary and sufficient to prevent smell degeneration in aging flies. Together, our data suggest that oxidative stress induced axonal degeneration in a single class of neurons drives the functional decline of an entire neural network and the behavior it controls. Given the important role of the cholinergic system in neurodegeneration, the fly olfactory system could be a useful model for the identification of drug targets.


Asunto(s)
Envejecimiento/patología , Neuronas Colinérgicas/patología , Estrés Oxidativo , Animales , Drosophila melanogaster , Modelos Animales , Degeneración Nerviosa/patología , Bulbo Olfatorio/patología , Superóxido Dismutasa/metabolismo
6.
Cell Rep ; 20(2): 464-478, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700946

RESUMEN

Animal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g., the metabolic state. Motivational states are determined by physiological parameters whose homeostatic imbalances are signaled to and processed within the brain, often mediated by modulatory peptides. Here, we investigate the regulation of appetitive and feeding behavior in the fruit fly, Drosophila melanogaster. We report that four neurons in the fly brain that release SIFamide are integral elements of a complex neuropeptide network that regulates feeding. We show that SIFamidergic cells integrate feeding stimulating (orexigenic) and feeding suppressant (anorexigenic) signals to appropriately sensitize sensory circuits, promote appetitive behavior, and enhance food intake. Our study advances the cellular dissection of evolutionarily conserved signaling pathways that convert peripheral metabolic signals into feeding-related behavior.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo , Animales , Conducta Apetitiva/fisiología , Conducta Animal/fisiología , Drosophila melanogaster , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Hambre/fisiología , Neuronas/metabolismo
7.
Mol Biol Res Commun ; 4(1): 33-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27843994

RESUMEN

Schizophrenia is a complex disorder with polygenic inheritance. The MTHFR gene (OMIM: 607093) plays an important role in the folate metabolism. It has been suggested that C677T (rs1801133) and A1298C (rs1801131) genetic polymorphisms in the MTHFR gene lead to the decreased activity of the methylenetetrahydrofolate reductase enzyme which may have significant effect on developing schizophrenia. We used a case-control study to establish the possible association between the C677T and the A1298C polymorphisms and susceptibility to schizophrenia in an Iranian population. The genotypes of the polymorphisms were determined using PCR-RFLP. The data were analyzed by logistic regression model. Data analysis revealed that the combination genotypes of 677CT/1298AA, 677CC/1298CC, 677TT/1298AA, 677CT/1298AC and 677CT/1298CC increase the risk of schizophrenia. In order to evaluate the effect of combined genotypes of the three mentioned polymorphic loci, the frequencies of the compound genotypes were compared between control and patient groups (Table 4). Base on the results, the existence of >4 risk factors showed about 32-fold increased risk for schizophrenia (OR=32.3, 95% CI: 5.52-188, P=<0.001).

8.
Front Behav Neurosci ; 8: 174, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860455

RESUMEN

Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced. The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.

9.
J Comp Neurol ; 521(17): 3992-4026, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23784863

RESUMEN

The mushroom body of the insect brain represents a neuronal circuit involved in the control of adaptive behavior, e.g., associative learning. Its function relies on the modulation of Kenyon cell activity or synaptic transmitter release by biogenic amines, e.g., octopamine, dopamine, or serotonin. Therefore, for a comprehensive understanding of the mushroom body, it is of interest not only to determine which modulatory neurons interact with Kenyon cells but also to pinpoint where exactly in the mushroom body they do so. To accomplish the latter, we made use of the GRASP technique and created transgenic Drosophila melanogaster that carry one part of a membrane-bound splitGFP in Kenyon cells, along with a cytosolic red fluorescent marker. The second part of the splitGFP is expressed in distinct neuronal populations using cell-specific Gal4 drivers. GFP is reconstituted only if these neurons interact with Kenyon cells in close proximity, which, in combination with two-photon microscopy, provides a very high spatial resolution. We characterize spatially and microstructurally distinct contact regions between Kenyon cells and dopaminergic, serotonergic, and octopaminergic/tyraminergic neurons in all subdivisions of the mushroom body. Subpopulations of dopaminergic neurons contact complementary lobe regions densely. Octopaminergic/tyraminergic neurons contact Kenyon cells sparsely and are restricted mainly to the calyx, the α'-lobes, and the γ-lobes. Contacts of Kenyon cells with serotonergic neurons are heterogeneously distributed over the entire mushroom body. In summary, the technique enables us to localize precisely a segmentation of the mushroom body by differential contacts with aminergic neurons.


Asunto(s)
Aminas Biogénicas/análisis , Comunicación Celular/fisiología , Proteínas Fluorescentes Verdes/análisis , Cuerpos Pedunculados/química , Cuerpos Pedunculados/citología , Neuronas/química , Animales , Animales Modificados Genéticamente , Aminas Biogénicas/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Drosophila melanogaster , Proteínas Fluorescentes Verdes/metabolismo , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA