RESUMEN
Urban lakes represent the most extensive water bodies in cities and provide blue ecosystem services, by retaining pollutants, offering cultural services, and mitigating climate change. Human activities threaten to decrease the supply of ecosystem services associated with urban lakes. Exorheic lakes play an essential role in reducing and changing the characteristics of pollutants and organic matter along the environmental continuum. This study aims to gain further understanding on the distribution and fate of organochlorine pesticides (OCPs) in relation to fluorescent dissolved organic matter (DOM) within an exorheic lake system, located along Colentina river, Bucharest. Results indicated a historical usage of HCHs, which were present in lake water and sediment samples, in concentrations exceeding the regulatory limits, with potential eco-toxicity on aquatic biota. Decades of intense applications along the river, before OCPs ban, led to their accumulation in sediments and their re-mobilization, each year, after the lakes were drained, dredged, and refilled. Fluorescence measurements revealed that DOM accumulated in certain lakes due to wastewater discharges, and surface runoff, but decreased towards the end of the exorheic lakes through dilution, sedimentation, and biodegradation. The results also showed that fluorescent DOM may have a substantial impact on OCPs cycle in urban lakes and may help to determine the conditions and effectiveness of removing OCPs from water and sediments. These issues contribute to the decrease of ecosystem services supply associated with urban lakes, having multiple hidden consequences on the urban environment.
Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hidrocarburos Clorados/análisis , Lagos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , China , Ciudades , Ecosistema , Humanos , Ríos/químicaRESUMEN
The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10-xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers.
RESUMEN
Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS) by different techniques: Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared Spectroscopy (FTIR). The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.
RESUMEN
In this paper, we report the structural and morphological properties of silver-doped hydroxyapatite (AgHAp) with a silver concentration x Ag = 0.5 before and after being thermal treated at 600 and 1000 °C. The results obtained by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy suggest that the structure of the samples changes gradually, from hydroxyapatite (AgHAp_40) to a predominant ß-TCP structure (AgHAp_1000), achieved when the thermal treatment temperature is 1000 °C. In the AgHAp_600 sample, the presence of two phases, HAp and ß-TCP, was highlighted. Also, scanning electron microscopy studies suggest that the shape and dimension of the nanoparticles begin to change when the temperature increases. The antimicrobial activity of the obtained compounds was evaluated against Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans strains.
RESUMEN
Iron oxide-silica nanoparticles (IOSi-NPs) were prepared from a mixture of ferrous chloride tetrahydrate and ferric chloride hexahydrate dropped into a silica xerogel composite. The structure and morphology of the synthesized maghemite nanoparticles into the silica xerogel were analysed by X-ray diffraction measurements, scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, and transmission electron microscopy. The results of the EDAX analysis indicated that the embedded particles were iron oxide nanoparticles. The particle size of IOSi-NPs calculated from the XRD analysis was estimated at around 12.5 nm. The average size deduced from the particle size distribution is 13.7 ± 0.6 nm, which is in good agreement with XRD analysis. The biocompatibility of IOSi-NPs was assessed by cell viability and cytoskeleton analysis. Histopathology analysis was performed after 24 hours and 7 days, respectively, from the intratracheal instillation of a solution containing 0.5, 2.5, or 5 mg/kg IOSi-NPs. The pathological micrographs of lungs derived from rats collected after the intratracheal instillation with a solution containing 0.5 mg/kg and 2.5 mg/kg IOSi-NPs show that the lung has preserved the architecture of the control specimen with no significant differences. However, even at concentrations of 5 mg/kg, the effect of IOSi-NPS on the lungs was markedly reduced at 7 days posttreatment.