Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34507997

RESUMEN

Late-stage anthrax infections are characterized by dysregulated immune responses and hematogenous spread of Bacillus anthracis, leading to extreme bacteremia, sepsis, multiple organ failure, and, ultimately, death. Despite the bacterium being nonhemolytic, some fulminant anthrax patients develop a secondary atypical hemolytic uremic syndrome (aHUS) through unknown mechanisms. We recapitulated the pathology in baboons challenged with cell wall peptidoglycan (PGN), a polymeric, pathogen-associated molecular pattern responsible for the hemostatic dysregulation in anthrax sepsis. Similar to aHUS anthrax patients, PGN induces an initial hematocrit elevation followed by progressive hemolytic anemia and associated renal failure. Etiologically, PGN induces erythrolysis through direct excessive activation of all three complement pathways. Blunting terminal complement activation with a C5 neutralizing peptide prevented the progressive deposition of membrane attack complexes on red blood cells (RBC) and subsequent intravascular hemolysis, heme cytotoxicity, and acute kidney injury. Importantly, C5 neutralization did not prevent immune recognition of PGN and shifted the systemic inflammatory responses, consistent with improved survival in sepsis. Whereas PGN-induced hemostatic dysregulation was unchanged, C5 inhibition augmented fibrinolysis and improved the thromboischemic resolution. Overall, our study identifies PGN-driven complement activation as the pathologic mechanism underlying hemolytic anemia in anthrax and likely other gram-positive infections in which PGN is abundantly represented. Neutralization of terminal complement reactions reduces the hemolytic uremic pathology induced by PGN and could alleviate heme cytotoxicity and its associated kidney failure in gram-positive infections.


Asunto(s)
Lesión Renal Aguda/prevención & control , Anemia Hemolítica/prevención & control , Bacillus anthracis/química , Pared Celular/química , Complemento C5/antagonistas & inhibidores , Peptidoglicano/toxicidad , Sepsis/complicaciones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Anemia Hemolítica/etiología , Anemia Hemolítica/patología , Animales , Carbunco/microbiología , Carbunco/patología , Femenino , Hemólisis , Masculino , Papio , Sepsis/inducido químicamente
2.
Proc Natl Acad Sci U S A ; 114(31): E6390-E6399, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28720697

RESUMEN

Bacterial sepsis triggers robust activation of the complement system with subsequent generation of anaphylatoxins (C3a, C5a) and the terminal complement complex (TCC) that together contribute to organ failure and death. Here we tested the effect of RA101295, a 2-kDa macrocyclic peptide inhibitor of C5 cleavage, using in vitro whole-blood assays and an in vivo baboon model of Escherichia coli sepsis. RA101295 strongly inhibited E. coli-induced complement activation both in vitro and in vivo by blocking the generation of C5a and the soluble form of TCC, sC5b-9. RA101295 reduced the E. coli-induced "oxidative burst," as well as leukocyte activation, without affecting host phagocytosis of E. coli RA101295 treatment reduced plasma LPS content in E. coli-challenged baboons, implying reduced complement-mediated bacteriolysis, whereas treated animals showed slightly improved bacterial clearance during the bacteremic stage compared with controls. Treatment with RA101295 also improved consumptive coagulopathy and preserved endothelial anticoagulant and vascular barrier functions. RA101295 abolished sepsis-induced surges in proinflammatory cytokines and attenuated systemic circulatory and febrile responses, likely reflecting decreased systemic levels of LPS and C5a. Overall, RA101295 treatment was associated with significant organ protection and markedly reduced mortality compared with nontreated controls (four of five animals survived in a 100% lethal model). We therefore conclude that inhibition of C5 cleavage during the bacteremic stage of sepsis could be an important therapeutic approach to prevent sepsis-induced inflammation, consumptive coagulopathy, and subsequent organ failure and death.

3.
J Biol Chem ; 286(2): 1429-35, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21059650

RESUMEN

Tissue factor has been recognized as a regulator of tumor angiogenesis and metastasis. The tissue factor gene is selectively expressed in highly invasive breast cancer cells, and the mechanisms regulating tissue factor expression in these cells remain unclear. This study demonstrates that microRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells, providing a molecular basis for the selective expression of the tissue factor gene. Tissue factor protein was barely detectable in MCF-7, T47D, and ZR-75-1 cells (less invasive breast lines) but was expressed at a significantly higher level in MDA-MB-231 and BT-20 cells (invasive breast lines) as assayed by Western blot. The tissue factor gene promoter was activated, and forced expression of tissue factor cDNA was achieved in MCF-7 cells, implying that the 3'-UTR of the tissue factor transcript is responsible for the suppression of tissue factor expression. Bioinformatics analysis predicted microRNA-binding sites for miR-19, miR-20, and miR-106b in the 3'-UTR of the tissue factor transcript. Reporter gene assay using the TF-3'-UTR luciferase reporter construct confirmed that the 3'-UTR negatively regulates gene expression in MCF-7 cells, an effect reversed by deletion of the miR-19-binding site. Application of the miR-19 inhibitor induces endogenous tissue factor expression in MCF-7 cells, and overexpression of miR-19 down-regulates tissue factor expression in MDA-MB-231 cells. RT-PCR analysis using cDNA made from Ago2-immunoprecipitated RNA samples confirmed that Ago2 binds preferentially to tissue factor 3'-UTR in MCF-7 cells, as compared with MDA-MB-231 cells, consistent with the observation that miR-19 levels are higher in MCF-7 cells.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Tromboplastina/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Femenino , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Blood Adv ; 3(16): 2436-2447, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31416821

RESUMEN

Disseminated intravascular coagulation is a frequent manifestation during bacterial infections and is associated with negative clinical outcomes. Imbalanced expression and activity of intravascular tissue factor (TF) is central to the development of infection-associated coagulopathies. Recently, we showed that anthrax peptidoglycan (PGN) induces disseminated intravascular coagulation in a nonhuman primate model of anthrax sepsis. We hypothesized that immune recognition of PGN by monocytes is critical for procoagulant responses to PGN and investigated whether and how PGN induces TF expression in primary human monocytes. We found that PGN induced monocyte TF expression in a large cohort of healthy volunteers similar to lipopolysaccharide stimulation. Both immune and procoagulant responses to PGN involve intracellular recognition after PGN internalization, as well as surface signaling through immune Fcγ receptors (FcγRs). In line with our hypothesis, blocking immune receptor function, both signaling and FcγR-mediated phagocytosis, significantly reduced but did not abolish PGN-induced monocyte TF expression, indicating that FcγR-independent internalization contributes to intracellular recognition of PGN. Conversely, when intracellular PGN recognition is abolished, TF expression was sensitive to inhibitors of FcγR signaling, indicating that surface engagement of monocyte immune receptors can promote TF expression. The primary procoagulant responses to PGN were further amplified by proinflammatory cytokines through paracrine and autocrine signaling. Despite intersubject variability in the study cohort, dual neutralization of tumor necrosis factor-α and interleukin-1ß provided the most robust inhibition of the procoagulant amplification loop and may prove useful for reducing coagulopathies in gram-positive sepsis.


Asunto(s)
Carbunco/inmunología , Coagulación Sanguínea/inmunología , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Peptidoglicano/inmunología , Transducción de Señal , Biomarcadores , Coagulación Sanguínea/efectos de los fármacos , Brefeldino A/farmacología , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/inmunología , Monocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tromboplastina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA