Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biochemistry (Mosc) ; 89(3): 393-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648760

RESUMEN

Courtship suppression is a behavioral adaptation of the fruit fly. When majority of the females in a fly population are fertilized and non-receptive for mating, a male, after a series of failed attempts, decreases its courtship activity towards all females, saving its energy and reproductive resources. The time of courtship decrease depends on both duration of unsuccessful courtship and genetically determined features of the male nervous system. Thereby, courtship suppression paradigm can be used for studying molecular mechanisms of learning and memory. p-Cofilin, a component of the actin remodeling signaling cascade and product of LIM-kinase 1 (LIMK1), regulates Drosophila melanogaster forgetting in olfactory learning paradigm. Previously, we have shown that limk1 suppression in the specific types of nervous cells differently affects fly courtship memory. Here, we used Gal4 > UAS system to induce limk1 overexpression in the same types of neurons. limk1 activation in the mushroom body, glia, and fruitless neurons decreased learning index compared to the control strain or the strain with limk1 knockdown. In cholinergic and dopaminergic/serotoninergic neurons, both overexpression and knockdown of limk1 impaired Drosophila short-term memory. Thus, proper balance of the limk1 activity is crucial for normal cognitive activity of the fruit fly.


Asunto(s)
Cortejo , Proteínas de Drosophila , Drosophila melanogaster , Quinasas Lim , Memoria , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , Quinasas Lim/metabolismo , Quinasas Lim/genética , Femenino , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/fisiología , Conducta Sexual Animal
2.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337379

RESUMEN

The temperature-sensitive Drosophila mutant agnts3 exhibits the restoration of learning defects both after heat shock (HS) and under hypomagnetic conditions (HMC). Previously, agnts3 was shown to have an increased level of LIM kinase 1 (LIMK1). However, its limk1 sequence did not significantly differ from that of the wild-type strain Canton-S (CS). Here, we performed whole-genome and poly(A)-enriched transcriptome sequencing of CS and agnts3 males normally, after HMC, and after HS. Several high-effect agnts3-specific mutations were identified, including MED23 (regulation of HS-dependent transcription) and Spn42De, the human orthologs of which are associated with intellectual disorders. Pronounced interstrain differences between the transcription profiles were revealed. Mainly, they included the genes of defense and stress response, long non-coding RNAs, and transposons. After HS, the differences between the transcriptomes became less pronounced. In agnts3, prosalpha1 was the only gene whose expression changed after both HS and HMC. The normal downregulation of prosalpha1 and Spn42De in agnts3 was confirmed by RT-PCR. Analysis of limk1 expression did not reveal any interstrain differences or changes after stress. Thus, behavioral differences between CS and agnts3 both under normal and stressed conditions are not due to differences in limk1 transcription. Instead, MED23, Spn42De, and prosalpha1 are more likely to contribute to the agnts3 phenotype.


Asunto(s)
Perfilación de la Expresión Génica , Quinasas Lim , Mutación , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , Drosophila melanogaster/genética , Respuesta al Choque Térmico/genética , Genoma de los Insectos
3.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293213

RESUMEN

Being involved in development of Huntington's, Parkinson's and Alzheimer's diseases, kynurenine pathway (KP) of tryptophan metabolism plays a significant role in modulation of neuropathology. Accumulation of a prooxidant 3-hydroxykynurenine (3-HOK) leads to oxidative stress and neuronal cell apoptosis. Drosophila mutant cardinal (cd1) with 3-HOK excess shows age-dependent neurodegeneration and short-term memory impairments, thereby presenting a model for senile dementia. Although cd gene for phenoxazinone synthase (PHS) catalyzing 3-HOK dimerization has been presumed to harbor the cd1 mutation, its molecular nature remained obscure. Using next generation sequencing, we have shown that the cd gene in cd1 carries a long deletion leading to PHS active site destruction. Contrary to the wild type Canton-S (CS), cd1 males showed defective long-term memory (LTM) in conditioned courtship suppression paradigm (CCSP) at days 5-29 after eclosion. The number of dopaminergic neurons (DAN) regulating fly locomotor activity showed an age-dependent tendency to decrease in cd1 relative to CS. Thus, in accordance with the concept "from the gene to behavior" proclaimed by S. Benzer, we have shown that the aberrant PHS sequence in cd1 provokes drastic LTM impairments and DAN alterations.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Drosophila/metabolismo , Quinurenina/metabolismo , Triptófano/metabolismo , Dominio Catalítico , Memoria a Largo Plazo , Mutación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445413

RESUMEN

Chromatin 3D structure plays a crucial role in regulation of gene activity. Previous studies have envisioned spatial contact formations between chromatin domains with different epigenetic properties, protein compositions and transcription activity. This leaves specific DNA sequences that affect chromosome interactions. The Drosophila melanogaster polytene chromosomes are involved in non-allelic ectopic pairing. The mutant strain agnts3, a Drosophila model for Williams-Beuren syndrome, has an increased frequency of ectopic contacts (FEC) compared to the wild-type strain Canton-S (CS). Ectopic pairing can be mediated by some specific DNA sequences. In this study, using our Homology Segment Analysis software, we estimated the correlation between FEC and frequency of short matching DNA fragments (FMF) for all sections of the X chromosome of Drosophila CS and agnts3 strains. With fragment lengths of 50 nucleotides (nt), CS showed a specific FEC-FMF correlation for 20% of the sections involved in ectopic contacts. The correlation was unspecific in agnts3, which may indicate the alternative epigenetic mechanisms affecting FEC in the mutant strain. Most of the fragments that specifically contributed to FMF were related to 1.688 or 372-bp middle repeats. Thus, middle repetitive DNA may serve as an organizer of ectopic pairing.


Asunto(s)
Cromatina/química , ADN Satélite/genética , Drosophila melanogaster/genética , Síndrome de Williams/genética , Cromosoma X/genética , Animales , Emparejamiento Base , Cromatina/genética , Biología Computacional/métodos , Modelos Animales de Enfermedad , Humanos , Cromosomas Politénicos/genética , Programas Informáticos
5.
PLoS Comput Biol ; 14(12): e1006672, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30532237

RESUMEN

Kynurenines, the products of tryptophan oxidative degradation, are involved in multiple neuropathologies, such as Huntington's chorea, Parkinson's disease, senile dementia, etc. The major cause for hydroxykynurenines's neurotoxicity is the oxidative stress induced by the reactive oxygen species (ROS), the by-products of L-3-hydroxykynurenine (L-3HOK) and 3-hydroxyanthranilic acid (3HAA) oxidative self-dimerization. 2-aminophenol (2AP), a structural precursor of L-3HOK and 3HAA, undergoes the oxidative conjugation to form 2-aminophenoxazinone. There are several modes of 2AP dimerization, including both enzymatic and non-enzymatic stages. In this study, the free energies for 2AP, L-3HOK and 3HAA dimerization stages have been calculated at B3LYP/6-311G(d,p)//6-311+(O)+G(d) level, both in the gas phase and in heptane or water solution. For the intermediates, ionization potentials and electron affinities were calculated, as well as free energy and kinetics of molecular oxygen interaction with several non-enzymatically formed dimers. H-atom donating power of the intermediates increases upon the progress of the oxidation, making possible generation of hydroperoxyl radical or hydrogen peroxide from O2 at the last stages. Among the dimerization intermediates, 2-aminophenoxazinole derivatives have the lowest ionization potential and can reduce O2 to superoxide anion. The rate for O-H homolytic bond dissociation is significantly higher than that for C-H bond in non-enzymatic quinoneimine conjugate. However, the last reaction passes irreversibly, reducing O2 to hydroperoxyl radical. The inorganic ferrous iron and the heme group of Drosophila phenoxazinone synthase significantly reduce the energy cost of 2AP H-atom abstraction by O2. We have also shown experimentally that total antioxidant capacity decreases in Drosophila mutant cardinal with L-3HOK excess relative to the wild type Canton-S, and lipid peroxidation decreases in aged cardinal. Taken together, our data supports the conception of hydroxykynurenines' dual role in neurotoxicity: serving as antioxidants themselves, blocking lipid peroxidation by H-atom donation, they also can easily generate ROS upon dimerization, leading to the oxidative stress development.


Asunto(s)
Quinurenina/química , Quinurenina/metabolismo , Modelos Biológicos , Aminofenoles/química , Aminofenoles/metabolismo , Animales , Antioxidantes/metabolismo , Biología Computacional , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Quinurenina/toxicidad , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Molecular , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Termodinámica , Triptófano/metabolismo
6.
PLoS Comput Biol ; 12(11): e1005213, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27861556

RESUMEN

Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical.


Asunto(s)
Antioxidantes/química , Quinurenina/química , Modelos Químicos , Modelos Moleculares , Oxígeno/química , Especies Reactivas de Oxígeno/química , Simulación por Computador , Enlace de Hidrógeno , Radical Hidroxilo/química , Oxidación-Reducción
7.
Langmuir ; 30(50): 15153-61, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25435075

RESUMEN

Formation and properties of Langmuir films of thiacalix[4]arene (TCA) derivatives containing N-donor groups on the lower rim (Y═O(CH2)3CN; OCH2CN; NH2; OCH2ArCN-p) in 1,3-alternate conformation on aqueous subphase and solid substrates have been studied. Only tetra-cyanopropoxy-p-tert-butylthiacalix[4]arene 1 forms a typical monomolecular layer with perpendicular orientation of the macrocycle relative to the water-air interface that is able to immobilize cytochrome c in the entire range of the surface pressure. Obtained monolayers were transferred by Langmuir-Schaefer technique onto quartz, indium-tin oxide (ITO), and silicon. It was demonstrated that protein activity is retained after immobilization on the substrate.


Asunto(s)
Citocromos c/química , Enzimas Inmovilizadas/química , Interacciones Hidrofóbicas e Hidrofílicas , Fenoles/química , Sulfuros/química , Animales , Bovinos , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie , Agua/química
8.
Front Plant Sci ; 15: 1349494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469323

RESUMEN

Introduction: Panax vietnamensis is a valuable medicinal plant and a source of a broad spectrum of biologically active ginsenosides of different structural groups. Overexploitation and low adaptability to planation cultivation have made this species vulnerable to human pressure and prompted the development of cell cultivation in vitro as a sustainable alternative to harvesting wild plants for their bioactive components. Despite high interest in biotechnological production, little is known about the main factors affecting cell growth and ginsenoside biosynthesis of this species under in vitro conditions. In this study, the potential of cell cultures of P. vietnamensis as a biotechnological source of ginsenosides was was assessed. Methods: Six suspension cell lines that were developed from different sections of a single rhizome through a multi-step culture optimization process and maintained for over 3 years on media with different mineral salt base and varying contents of auxins and cytokinins. These cell lines were evaluated for productivity parameters and cytological characteristics. Ginsenoside profiles were assessed using a combination of the reversed-phase ultra-high-performance liquid chromatography-Orbitrap-tandem mass spectrometry (UHPLC-Orbitrap-MS/MS) and ultra-performance liquid chromatography-time of flight-mass spectrometry (UPLC-TOF-MS). Results: All lines demonstrated good growth with a specific growth rate of 0.1-0.2 day-1, economic coefficient of 0.31-0.70, productivity on dry weight (DW) of 0.30-0.83 gDW (L·day)-1, and maximum biomass accumulation varying from 10 to 22 gDW L-1. Ginsenosides of the protopanaxadiol (Rb1, Rb2/Rb3, malonyl-Rb1, and malonyl-Rb2/Rb3), oleanolic acid (R0 and chikusetsusaponin IV), and ocotillol (vinaginsenoside R1) groups and their isomers were identified in cell biomass extracts. Chikusetsusaponin IV was identified in P. vietnamensis cell culture for the first time. Discussion: These results suggest that suspension cell cultures of Vietnamese ginseng have a high potential for the biotechnological production of biomass containing ginsenosides, particularly of the oleanolic acid and ocotillol groups.

9.
Plants (Basel) ; 12(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37896105

RESUMEN

Polyscias fruticosa (L.) Harms, or Ming aralia, is a medicinal plant of the Araliaceae family, which is highly valued for its antitoxic, anti-inflammatory, analgesic, antibacterial, anti-asthmatic, adaptogenic, and other properties. The plant can be potentially used to treat diabetes and its complications, ischemic brain damage, and Parkinson's disease. Triterpene glycosides of the oleanane type, such as 3-O-[ß-D-glucopyranosyl-(1→4)-ß-D-glucuronopyranosyl] oleanolic acid 28-O-ß-D-glucopyranosyl ester (PFS), ladyginoside A, and polysciosides A-H, are mainly responsible for biological activities of this species. In this study, cultivation of the cell suspension of P. fruticosa in 20 L bubble-type bioreactors was attempted as a sustainable method for cell biomass production of this valuable species and an alternative to overexploitation of wild plant resources. Cell suspension cultivated in bioreactors under a semi-continuous regime demonstrated satisfactory growth with a specific growth rate of 0.11 day-1, productivity of 0.32 g (L · day)-1, and an economic coefficient of 0.16 but slightly lower maximum biomass accumulation (~6.8 g L-1) compared to flask culture (~8.2 g L-1). Triterpene glycosides PFS (0.91 mg gDW-1) and ladyginoside A (0.77 mg gDW-1) were detected in bioreactor-produced cell biomass in higher concentrations compared to cells grown in flasks (0.50 and 0.22 mg gDW-1, respectively). In antibacterial tests, the minimum inhibitory concentrations (MICs) of cell biomass extracts against the most common pathogens Staphylococcus aureus, methicillin-resistant strain MRSA, Pseudomonas aeruginosa, and Escherichia coli varied within 250-2000 µg mL-1 which was higher compared to extracts of greenhouse plant leaves (MIC = 4000 µg mL-1). Cell biomass extracts also exhibited antioxidant activity, as confirmed by DPPH and TEAC assays. Our results suggest that bioreactor cultivation of P. fruticosa suspension cell culture may be a perspective method for the sustainable biomass production of this species.

10.
Nutrients ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771371

RESUMEN

Obesity, and its consequences for human health, is a huge and complicated problem that has no simple solution. The constant search for natural and safe compounds with systemic action that can be used for obesity prophylactics and treatment is hampered by the limited availability and variable quality of biomass of wild medicinal plants. Plant cell biotechnology is an alternative approach for the sustainable production of vegetative biomass or individual phytochemicals with high therapeutic potential. In this study, the suspension cell biomass of the medicinal plants, Dioscorea deltoidea Wall., Tribulus terrestris L., and Panax japonicus (T. Nees) C.A. Mey, produced in 20 L and 630 L bioreactors, were tested for therapeutic effects in rat models with alimentary-induced obesity. Three-month intake of water infusions of dry cell biomass (100 mg/g body weight) against the background of a hypercaloric diet reduced weight gain and the proportion of fat mass in the obese animals. In addition, cell biomass preparation reduced the intracellular dehydration and balanced the amounts of intra- and extracellular fluids in the body as determined by bioimpedance spectroscopy. A significant decrease in the glucose and cholesterol levels in the blood was also observed as a result of cell biomass administration for all species. Hypocholesterolemic activity reduced in the line P. japonicus > D. deltoidea > T. terrestris/liraglutide > intact group > control group. By the sum of parameters tested, the cell culture of D. deltoidea was considered the most effective in mitigating diet-induced obesity, with positive effects sometimes exceeding those of the reference drug liraglutide. A safety assessment of D. deltoidea cell phytopreparation showed no toxic effect on the reproductive function of the animals and their offspring. These results support the potential application of the biotechnologically produced cell biomass of medicinal plant species as safe and effective natural remedies for the treatment of obesity and related complications, particularly for the long-term treatment and during pregnancy and lactation periods when conventional treatment is often contraindicated.


Asunto(s)
Dioscorea , Trastornos del Metabolismo de los Lípidos , Panax , Plantas Medicinales , Tribulus , Humanos , Femenino , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Dioscorea/química , Hipoglucemiantes/farmacología , Tribulus/química , Biomasa , Liraglutida , Extractos Vegetales/farmacología , Extractos Vegetales/química , Técnicas de Cultivo de Célula/métodos , Plantas Medicinales/química , Obesidad/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA