Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 155(7): 1446-8, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360269

RESUMEN

Hsaio and colleagues link gut microbes to autism spectrum disorders (ASD) in a mouse model. They show that ASD symptoms are triggered by compositional and structural shifts of microbes and associated metabolites, but symptoms are relieved by a Bacteroides fragilis probiotic. Thus probiotics may provide therapeutic strategies for neurodevelopmental disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/microbiología , Tracto Gastrointestinal/microbiología , Animales , Femenino , Humanos
2.
BMC Genomics ; 25(1): 615, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890582

RESUMEN

BACKGROUND: Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS: Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS: Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.


Asunto(s)
Genoma Mitocondrial , Genómica , Nematodos , Filogenia , Selección Genética , Animales , Nematodos/genética , Genómica/métodos , Composición de Base , Evolución Molecular , Codón/genética
3.
J Nematol ; 55(1): 20230006, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37143483

RESUMEN

Nematodes are the most abundant and diverse animals on the planet but lack representation in biodiversity research. This presents a problem for studying nematode diversity, particularly when molecular tools (i.e., barcoding and metabarcoding) rely on well-populated and curated reference databases, which are absent for nematodes. To improve molecular identification and the assessment of nematode diversity, we created and curated an 18S rRNA database specific to nematodes (18S-NemaBase) using sequences sourced from the most recent publicly available 18S rRNA SILVA v138 database. As part of the curation process, taxonomic strings were standardized to contain a fixed number of taxonomic ranks relevant to nematology and updated for the most recent accepted nematode classifications. In addition, apparent erroneous sequences were removed. To test the efficacy and accuracy of 18S-NemaBase, we compared it to an older but also curated SILVA v111 and the newest SILVA v138 by assigning taxonomies and analyzing the diversity of a nematode dataset from the Western Nebraska Sandhills. We showed that 18S-NemaBase provided more accurate taxonomic assignments and diversity assessments than either version of SILVA, with a much easier workflow and no need for manual corrections. Additionally, observed diversity further improved when 18S-NemaBase was supplemented with reference sequences from nematodes present in the study site. Although the 18S-NemaBase is a step in the right direction, a concerted effort to increase the number of high-quality, accessible, full-length nematode reference sequences is more important now than ever.

4.
Mol Ecol ; 31(14): 3903-3916, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593510

RESUMEN

Although abiotic environmental factors have been historically regarded as the dominant deterministic process in microbial community assembly, recent studies indicate that biotic interactions may be equally significant. However, the extent to which both processes are important in assembly of belowground communities is unknown. Along two environmental gradients: alkalinity (ranging from pH ~7 to ~11) and habitat type (lakes, shorelines, and prairies around lakes) present in the Western Nebraska Sandhills, we used 18S rRNA gene marker metabarcoding and statistical analyses, including generalized dissimilarity modelling (GDM), to evaluate the dynamics between abiotic and biotic factors that might play a role in nematode community assembly. Lakes supported the least diverse and prairies the most diverse communities with completely distinct compositions. We also observed a potential role of alkalinity in shaping these communities but only in lakes. Generally, GDMs indicated the influence of both abiotic and biotic factors. However, their relative importance in explaining community variability was dependent on the habitat. Biotic factors influenced the lake communities most, followed by shorelines and prairies, explaining ~47%, 27% and 8% of the variation, respectively. In contrast, the role of abiotic factors was relatively similar in lakes, shorelines and prairies (~15%, 18% and 14% of the variation, respectively). Most variation in the shorelines (62%) and prairies (82%) remained unexplained, suggesting the potential importance of factors associated with specific traits or a stronger role of stochastic processes. Nevertheless, our findings suggest both deterministic processes are important in nematode community assembly, but their specific contributions are context-dependent.


Asunto(s)
Microbiota , Nematodos , Animales , Lagos , Nebraska , Nematodos/genética
5.
J Nematol ; 54(1): 20220039, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36457372

RESUMEN

Taxonomic resolution is a critical component of biodiversity assessments. In this case study, we examined a single taxon within a larger study of nematode diversity to evaluate the taxonomic resolution of different diversity assessment methods. The selected taxon was the microbial-feeding genus Plectus, a group considered to include multiple cosmopolitan species. The methods included a morphological evaluation by light microscopy, Sanger sequencing of PCR amplicons of COI and 18S gene regions, and 18S metabarcoding sequencing. The study sites were 15 remnant tallgrass prairie plots in eastern Nebraska. In the morphological analysis, we observed two basic morphotypes, a short-tailed form with a small amphid and a long-tailed form with a large amphid. Sanger sequencing of COI sorted Plectus diversity into six distinct clades. The largest two of these six clades keyed to P. parietinus and P. rhizophilus based on morphology. BLAST analysis with COI revealed no close matches in GenBank. Sanger sequencing of the 18S region did not differentiate the six clades. These results illustrate that the method of diversity assessment strongly influences estimates of biodiversity. An additional 95 Plectus specimens, from outside the remnant sites, added taxonomic breadth to the COI phylogenetic tree. There were no geographically widespread COI haplotypes and no evidence of cosmopolitan Plectus species.

6.
Ecology ; 99(9): 1942-1952, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30024640

RESUMEN

Despite decades of interest, few studies have provided evidence supporting theoretical expectations for coupled relationships between aboveground and belowground diversity and ecosystem functioning in non-manipulated natural ecosystems. We characterized plant species richness and density, soil bacterial, fungal and eukaryotic species richness and phylogenetic diversity (using 16S, ITS, and 18S gene sequencing), and ecosystem function (levels of soil C and N, and rates of microbial enzyme activities) along a natural gradient in plant richness and density in high-elevation, C-deficient soils to examine the coupling between above- and belowground systems. Overall, we observed a strong positive relationship between aboveground (plant richness and density) and belowground (bacteria, fungi, and non-fungal eukaryotes) richness. In addition to the correlations between plants and soil communities, C and N pools, and rates of enzyme activities increased as plant and soil communities became richer and more diverse. Our results suggest that the theoretically expected positive correlation between above- and belowground communities does exist in natural systems, but may be undetectable in late successional ecosystems due to the buildup of legacy organic matter that results in extremely complex belowground communities. In contrast, microbial communities in early successional systems, such as the system described here, are more directly dependent on contemporary inputs from plants and therefore are strongly correlated with plant diversity and density.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Plantas/clasificación , Microbiología del Suelo
7.
Microb Ecol ; 76(2): 340-351, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29305629

RESUMEN

The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ambientes Extremos , Microbiota , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Chile , Análisis por Conglomerados , Biología Computacional , Cianobacterias/clasificación , Clima Desértico , Exobiología , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Suelo , Temperatura
8.
Phytopathology ; 104(7): 749-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24915429

RESUMEN

Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis, and inaccessible DNA in resistant life stages. Identification of the sources of error allows us to suggest ways to improve identification using ecometagenetics.


Asunto(s)
Nematodos/aislamiento & purificación , Enfermedades de las Plantas/parasitología , Suelo/parasitología , Animales , Cartilla de ADN/genética , ADN de Helmintos/química , ADN de Helmintos/genética , Metagenómica , Nematodos/genética , Raíces de Plantas/parasitología , Plantas/parasitología , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Tylenchoidea/genética , Tylenchoidea/aislamiento & purificación
9.
Mol Ecol Resour ; 23(5): 975-989, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36727264

RESUMEN

DNA barcoding approaches have greatly increased our understanding of biodiversity on the planet, and metabarcoding is widely used for classifying members of the phylum Nematoda. However, loci typically utilized in metabarcoding studies are often unable to resolve closely related species or are unable to recover all taxa present in a sample due to inadequate PCR primer binding. Mitochondrial metagenomics (mtMG) is an alternative approach utilizing shotgun sequencing of total DNA to recover the mitochondrial genomes of all species present in samples. However, this approach requires a comprehensive reference database for identification and currently available mitochondrial sequences for nematodes are highly dominated by sequences from the order Rhabditida, and excludes many clades entirely. Here, we analysed the efficacy of mtMG for the recovery of nematode taxa and the generation of mitochondrial genomes. We first developed a curated reference database of nematode mitochondrial sequences and expanded it with 40 newly sequenced taxa. We then tested the mito-metagenomics approach using a series of nematode mock communities consisting of morphologically identified nematode species representing various feeding traits, life stages, and phylogenetic relationships. We were able to identify all but two species through the de novo assembly of COX1 genes. We were also able to recover additional mitochondrial protein coding genes (PCGs) for 23 of the 24 detected species including a full array of 12 PCGs from five of the species. We conclude that mtMG offers a potential for the effective recovery of nematode biodiversity but remains limited by the breadth of the reference database.


Asunto(s)
Genoma Mitocondrial , Nematodos , Animales , Filogenia , Metagenómica , Nematodos/genética , Biodiversidad , ADN , Código de Barras del ADN Taxonómico , Genoma Mitocondrial/genética
10.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965868

RESUMEN

Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four 'cosmopolitan' bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.


Asunto(s)
Endófitos , Micobioma , Humanos , Hongos , Plantas/microbiología , Bacterias
11.
J Nematol ; 44(1): 18-25, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23482827

RESUMEN

Pyrosequencing of an artificially assembled nematode community of known nematode species at known densities allowed us to characterize the potential extent of chimera problems in multi-template eukaryotic samples. Chimeras were confirmed to be very common, making up to 17% of all high quality pyrosequencing reads and exceeding 40% of all OCTUs (operationally clustered taxonomic units). Typically, chimeric OCTUs were made up of single or double reads, but very well covered OCTUs were also present. As expected, the majority of chimeras were formed between two DNA molecules of nematode origin, but a small proportion involved a nematode and a fragment of another eukaryote origin. In addition, examples of a combination of three or even four different template origins were observed. All chimeras were associated with the presence of conserved regions with 80% of all recombinants following a conserved region of about 25bp. While there was a positive influence of species abundance on the overall number of chimeras, the influence of specific-species identity was less apparent. We also suggest that the problem is not nematode exclusive, but instead applies to other eukaryotes typically accompanying nematodes (e.g. fungi, rotifers, tardigrades). An analysis of real environmental samples revealed the presence of chimeras for all eukaryotic taxa in patterns similar to that observed in artificial nematode communities. This information warrants caution for biodiversity studies utilizing a step of PCR amplification of complex DNA samples. When unrecognized, generated abundant chimeric sequences falsely overestimate eukaryotic biodiversity.

12.
J Nematol ; 44(2): 115-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23482864

RESUMEN

The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.

13.
Sci Rep ; 12(1): 20118, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446870

RESUMEN

Recent work examining nematode and tardigrade gut microbiomes has identified species-specific relationships between host and gut community composition. However, only a handful of species from either phylum have been examined. How microbiomes differ among species and what factors contribute to their assembly remains unexplored. Cyanobacterial mats within Antarctic Dry Valley streams host a simple and tractable natural ecosystem of identifiable microinvertebrates to address these questions. We sampled 2 types of coexisting mats (i.e., black and orange) across four spatially isolated streams, hand-picked single individuals of two nematode species (i.e., Eudorylaimus antarcticus and Plectus murrayi) and tardigrades, to examine their gut microbiomes using 16S and 18S rRNA metabarcoding. All gut microbiomes (bacterial and eukaryotic) were significantly less diverse than the mats they were isolated from. In contrast to mats, microinvertebrates' guts were depleted of Cyanobacteria and differentially enriched in taxa of Bacteroidetes, Proteobacteria, and Fungi. Among factors investigated, gut microbiome composition was most influenced by host identity while environmental factors (e.g., mats and streams) were less important. The importance of host identity in predicting gut microbiome composition suggests functional value to the host, similar to other organisms with strong host selected microbiomes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Tardigrada , Animales , Humanos , Regiones Antárticas , Chromadorea , Microbioma Gastrointestinal/genética , Microbiota/genética , Ríos
14.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627905

RESUMEN

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Asunto(s)
Efectos Antropogénicos , Cubierta de Hielo , Ecosistema , Humanos , Minerales
15.
Front Microbiol ; 12: 654135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177836

RESUMEN

Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.

16.
Mol Ecol ; 19(24): 5521-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21054606

RESUMEN

The general patterns of increasing biodiversity from the poles to the equator have been well documented for large terrestrial organisms such as plants and vertebrates but are largely unknown for microbiota. In contrast to macrobiota, microbiota have long been assumed to exhibit cosmopolitan, random distributions and a lack of spatial patterns. To evaluate the assumption, we conducted a survey of nematode diversity within the soil, litter and canopy habitats of the humid lowland tropical rainforest of Costa Rica using an ultrasequencing ecometagenetic approach at a species-equivalent taxonomic level. Our data indicate that both richness and diversity of nematode communities in the tropical rainforests of Costa Rica are high and exceed observed values from temperate ecosystems. The majority of nematode species were unknown to science, providing evidence for the presence of highly endemic (not cosmopolitan) species of still completely undiscovered biodiversity. Most importantly, the greater taxonomic resolution used here allowed us to reveal predictable habitat associations for specific taxa and thus gain insights into their nonrandom distribution patterns.


Asunto(s)
Nematodos/clasificación , Nematodos/genética , Animales , Biodiversidad , Código de Barras del ADN Taxonómico , Análisis de Secuencia de ADN , Clima Tropical
17.
Microorganisms ; 8(11)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171740

RESUMEN

The island species-area relationship (ISAR) is a positive association between the number of species and the area of an isolated, island-like habitat. ISARs are ubiquitous across domains of life, yet the processes generating ISARs remain poorly understood, particularly for microbes. Larger and more productive islands are hypothesized to have more species because they support larger populations of each species and thus reduce the probability of stochastic extinctions in small population sizes. Here, we disentangled the effects of "island" size and productivity on the ISAR of Antarctic cryoconite holes. We compared the species richness of bacteria and microbial eukaryotes on two glaciers that differ in their productivity across varying hole sizes. We found that cryoconite holes on the more productive Canada Glacier gained more species with increasing hole area than holes on the less productive Taylor Glacier. Within each glacier, neither productivity nor community evenness explained additional variation in the ISAR. Our results are, therefore, consistent with productivity shaping microbial ISARs at broad scales. More comparisons of microbial ISARs across environments with limited confounding factors, such as cryoconite holes, and experimental manipulations within these systems will further contribute to our understanding of the processes shaping microbial biogeography.

18.
Sci Total Environ ; 724: 138112, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32408434

RESUMEN

Despite recent great interest in glacier ecosystems in the continental Antarctic, little is known about their maritime counterparts. Our study presents descriptive data on cryoconite sediments and cryoconite holes on Ecology Glacier (King George Island) to accomplish three main objectives: (a) to identify main eukaryotic (algae, invertebrates) and prokaryotic (cyanobacteria) components of microbial communities; (b) to provide a "baseline" of community composition, organic matter and artificial contamination; and (c) to identify key abiotic factors that might be important in community assembly. Cryoconite holes were sampled along an altitudinal gradient of Ecology Glacier in January, mid Austral Summer 2017. Cryoconite holes located in lower altitude were deeper than those located in the middle and the highest altitude. Seventeen species of algae and cyanobacteria with biomass of 0.79 to 5.37 µg/cm3 have been found in sediments. Dominant species were cyanobacterial Pseudanabaena frigida and Bacillariophyceae Microcostaus sp. Biomass of Bacillariophyceae was significantly higher than that of Chlorophyta and Cyanobacteria. We found three species of rotifers (potentially two new to science) and for the first time a glacier dwelling Acari (suspension feeder, Nanorchestes nivalis). Organic matter content ranged from 5.4% to 7.6%. Investigated artificial radionuclides included 137Cs, 238Pu, 239+240Pu and 241Am. 210Pb seems to be related to organic matter content. Overall, cryoconite holes on Ecology Glacier present unique habitats that serve as biodiversity hotspots of psychrophiles, source of organic matter, matrices for radioactivity tracking and model for observing changes in supraglacial ecosystems in the maritime Antarctic.


Asunto(s)
Ecosistema , Cubierta de Hielo , Regiones Antárticas , Cianobacterias , Ecología
19.
Viruses ; 11(11)2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689942

RESUMEN

Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics. Half of the assembled metagenomes cluster with those in the viral family Microviridae (n = 7), and the rest with unclassified circular replication associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses (n = 7). An additional 18 virus-like circular molecules encoding either a Rep, a capsid protein gene, or other unidentified but viral-like open reading frames were identified. The samples from which the genomes were identified show a strong gradient in microbial diversity and abundances, and the number of viral genomes detected in each sample mirror that gradient. Additionally, one of the CRESS genomes assembled here shares ~90% genome-wide pairwise identity with a virus identified from a freshwater pond on the McMurdo Ice Shelf (Antarctica). Otherwise, the similarity of these viruses to those previously identified is relatively low. Together, these patterns are consistent with the presence of a unique regional virome present in fresh water host populations of the McMurdo Dry Valley region.


Asunto(s)
Virus ADN/genética , ADN de Cadena Simple , Cubierta de Hielo/virología , Regiones Antárticas , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , ADN Circular , ADN Viral/genética , Agua Dulce/virología , Genoma Viral/genética , Metagenómica , Microbiota/genética , Microviridae/clasificación , Microviridae/genética , Microviridae/aislamiento & purificación , Sistemas de Lectura Abierta , Filogenia , Proteínas Virales/genética
20.
Sci Rep ; 9(1): 5893, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971738

RESUMEN

Tropical rainforests play important roles in carbon sequestration and are hot spots for biodiversity. Tropical forests are being replaced by rubber (Hevea brasiliensis) plantations, causing widespread concern of a crash in biodiversity. Such changes in aboveground vegetation might have stronger impacts on belowground biodiversity. We studied tropical rainforest fragments and derived rubber plantations at a network of sites in Xishuangbanna, China, hypothesizing a major decrease in diversity with conversion to plantations. We used metabarcoding of the 18S rRNA gene and recovered 2313 OTUs, with a total of 449 OTUs shared between the two land-use types. The most abundant phyla detected were Annelida (66.4% reads) followed by arthropods (15.5% reads) and nematodes (8.9% reads). Of these, only annelids were significantly more abundant in rubber plantation. Taken together, α- and ß-diversity were significantly higher in forest than rubber plantation. Soil pH and spatial distance explained a significant portion of the variability in phylogenetic community structure for both land-use types. Community assembly was primarily influenced by stochastic processes. Overall it appears that forest replacement by rubber plantation results in an overall loss and extensive replacement of soil micro- and mesofaunal biodiversity, which should be regarded as an additional aspect of the impact of forest conversion.


Asunto(s)
Biodiversidad , Hevea/crecimiento & desarrollo , Bosque Lluvioso , Microbiología del Suelo , Animales , Anélidos/genética , Anélidos/fisiología , Artrópodos/genética , Artrópodos/fisiología , Secuestro de Carbono , Concentración de Iones de Hidrógeno , Nematodos/genética , Nematodos/fisiología , ARN Ribosómico 18S/genética , Suelo/química , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA