Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Healthcare (Basel) ; 12(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998805

RESUMEN

Traumatic peripheral nerve injuries (PNI), present with symptoms ranging from pain to loss of motor and sensory function. Difficulties in intraoperative visual assessment of nerve functional status necessitate intraoperative nerve conduction studies (INCSs) by neurosurgeons and neurologists to determine the presence of functioning axons in the zone of a PNI. This process, also referred to as nerve "inching", uses a set of stimulating and recording electrode hooks to lift the injured nerve from the surrounding surgical field and to determine whether an electrical stimulus can travel through the zone of injury. However, confounding electrical signal artifacts can arise from the current workflow and electrode design, particularly from the mandatory lifting of the nerve, complicating the definitive assessment of nerve function and neurosurgical treatment decision-making. The objective of this study is to describe the design process and verification testing of our group's newly designed stimulating and recording electrodes that do not require the lifting or displacement of the injured nerve during INCSs. Ergonomic in vivo analysis of the device within a porcine model demonstrated successful intraoperative manipulation of the device, while quantitative nerve action potential (NAP) signal analysis with an ex vivo simulated "inching" procedure on healthy non-human primate nerve tissue demonstrated excellent reproducible recorded NAP fidelity and the absence of NAP signal artifacts at all points of recording. Lastly, electrode pullout force testing determined maximum forces of 0.43 N, 1.57 N, and 3.61 N required to remove the device from 2 mm, 5 mm, and 1 cm nerve models, respectively, which are well within established thresholds for nerve safety. These results suggest that these new electrodes can safely and successfully perform accurate PNI assessment without the presence of artifacts, with the potential to improve the INCS standard of care while remaining compatible with currently used neurosurgical technology, infrastructure, and clinical workflows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA