Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(22): 11861-11879, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31732746

RESUMEN

Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Estabilidad del ARN , Proteínas de Motivos Tripartitos/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Regiones no Traducidas 3' , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/fisiología , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
2.
Front Cell Dev Biol ; 9: 658966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055789

RESUMEN

Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA