RESUMEN
Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.
Asunto(s)
Enfermedad de Chagas , Leucocitos Mononucleares , Microalgas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Microalgas/química , Extractos Vegetales/farmacología , Citocinas/metabolismoRESUMEN
Cardiovascular diseases (CVDs) cause 30% of deaths each year, and in 2030, around 23.6 million people will die due to CVDs. The major challenge is to obtain molecules with minimal adverse reactions that can prevent and dissolve blood clots. In this context, fibrinolytic enzymes from diverse microorganism sources have been extensively investigated due to their potential to act directly and specifically on the fibrin clot, preventing side effects and performing potential thrombolytic effects. However, most researches focus on the purification and characterization of proteases, with little emphasis on the mechanism of action and pharmacological characteristics, including toxicity assays which are essential to assess safety and side effects. Therefore, this work aims to emphasize the importance of evaluations indicating the toxicological profile of fibrinolytic proteases through in vitro and in vivo tests. Both types of assays contribute as preclinical stage in drug development and are crucial for clinical applications. This scarcity creates arbitrary barriers to further studies. This work should further encourage the development of studies to ensure the safety and effectivity of fibrinolytic proteases.
Suggested pre-clinical trials aim to validate more specific methods for fibrinolytic enzymes;Current toxicity standards can be adapted to better assess the profile of fibrinolytic enzymes;The class of fibrinolytic enzymes must be carefully evaluated according to the method of application.
RESUMEN
Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pHâ¯7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.
Asunto(s)
Streptomyces antibioticus , Café , Termodinámica , Colagenasas , Péptidos , Concentración de Iones de Hidrógeno , CinéticaRESUMEN
Collagenolytic proteases produced by Aspergillus heteromorphus URM0269 were extracted using a PEG/sulfate aqueous two-phase system (ATPS). A 23 factorial design was performed to analyze the independent variables: PEG molar mass (MPEG), PEG concentration (CPEG), and sulfate concentration (Csulf). The extracted proteases were also evaluated for their optimum pH and stability at different pH levels (4.0 - 11.0) after 20 h of incubation. Collagen was extracted from mutton snapper (Lutjanus analis) skin using acetic acid (0.5 mol L-1). The enzyme was preferentially partitioned to the PEG-rich phase (K > 1), whose highest purification factor and recovery (PF = 6.256 and Y = 404.432%) were obtained under specific conditions: MPEG 8000 g.mol-1, CPEG 30%, Csulf 10%. The ATPS extraction provided an enzymatic activity range of pH 7.0 - 11.0, exhibiting greater stability compared to the crude extract. Approximately 80% of protease activity was maintained after 20 hours of incubation at all analyzed pH levels, except pH 11.0. Collagen extraction from L. analis skin yielded 8.056%, and both crude extract samples and ATPS-derived samples successfully hydrolyzed the extracted collagen, reaching peak hydrolysis after 36 hours of treatment. These findings demonstrate the feasibility of extracting highly purified and active proteases capable of hydrolyzing L. analis collagen.
RESUMEN
Fructooligosaccharides (FOS) are prebiotics of interest to the food industry. These compounds can be produced through the transfructosylation reaction by the enzyme fructofuranosidase. This enzyme is widely produced by fungi in a medium rich in sugar. Therefore, in this work, the main objectives were production, purification, biochemical characterization of a novel fructofuranosidase enzyme by Penicillium citreonigrum URM 4459 and synthesize and evaluate the antibacterial potential of fructooligosaccharides. With respect to sucrose hydrolysis, the optimal pH was 5.5, the apparent Km for purified FFase was 3.8 mM, the molecular mass was 43.0 kDa, estimated by gel filtration on Superdex increase G75 controlled by AKTA Avant 25 and confirmed by 10% SDS-PAGE under denaturing condition. Also, the isoelectric point was 4.9. The fractions obtained with enzymatic activities, both stable at acidic pH and high temperatures, as well as being able to produce FOS. Regarding antibacterial activity, the FOS produced in this study showed better results than commercial FOS and other carbon sources. Thus, this work presents relevant data for the use of P. citreonigum to produce fructofuranosidase and consequently FOS and can be used in the food and pharmaceutical industry.
Asunto(s)
Penicillium , beta-Fructofuranosidasa , Oligosacáridos , Concentración de Iones de HidrógenoRESUMEN
Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.
Asunto(s)
Bacillus , Trombosis , Bacterias , Endopeptidasas , Fibrinolíticos/química , Fibrinolíticos/farmacología , Humanos , Péptido Hidrolasas , Trombosis/tratamiento farmacológicoRESUMEN
Wounds are a public health problem due to long periods required to repair damaged skin, risk of infection, and amputations. Thus, there is a need to obtain new therapeutic agents with less side effects, more effective oxygen delivery, and increased epithelial cell migration. Photosynthetic microorganisms, such as microalgae and cyanobacteria, may be used as a source of biomolecules for the treatment of different injuries. The aim of this review article focuses on healing potential using phytoconstituents from photosynthetic microorganisms. Cyanophyte Spirulina and Chlorophyte Chlorella are more promising due to steroids, triterpenes, carbohydrates, phenols, and proteins such as lectins and phycocyanin. However, there are few reports about identification and specific function of these molecules on the skin. In other microalgae and cyanobacteria genus, high contents of pigments such as ß-carotene, chlorophyll a, allophycocyanin, and hydroxypheophytin were detected, but their effects on phases of wound healing is absent yet. The development of new topical drugs from photosynthetic microorganisms could be a potential alternative to maximize healing. KEY POINTS: ⢠Conventional treatment to skin injuries has limitations. ⢠Proteins, terpenes, and phenols increase collagen deposition and re-epithelialization. ⢠Microalgae and cyanobacteria may be used as a source of biomolecules to wound healing.
Asunto(s)
Chlorella , Microalgas , Clorofila A , Colágeno , FotosíntesisRESUMEN
The present study evaluated the influence of the variables polyethylene glycol (PEG) molar mass, pH, PEG concentration and sodium citrate concentration in the integrated production of the protease from Aspergillus tamarii Kita UCP1279 by extractive fermentation, obtaining as a response the partition coefficient (K), activity yield (Y) and concentration factor (CF). The enzyme preferably partitioned to the top phase and obtained in the system formed by variables MPEG = 400 g mol-1, CPEG = 20% (w w-1), and CCIT = 20% (w w-1) and pH 6, in this condition were obtained CF = 1.90 and Y = 79.90%. The protease showed stability at a temperature of 60 °C for 180 min, with optimum temperature 40 °C and pH 8.0. For the ions and inhibitors effects, the protease activity increased when exposed to Fe2+, Ca2+ and Zn2 + and inhibited by EDTA, being classified as metalloprotease. The kinetic parameters Km (35.63 mg mL-1) and Vmax (1.205 mg mL-1 min-1) were also estimated. Thus, the protease showed desirable characteristics that enable future industrial applications, especially, for beer industry.
Asunto(s)
Aspergillus/metabolismo , Ácido Cítrico/química , Proteínas Fúngicas/metabolismo , Péptido Hidrolasas/metabolismo , Polietilenglicoles/química , Estabilidad de Enzimas , Fermentación , Proteínas Fúngicas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Microbiología Industrial , Péptido Hidrolasas/aislamiento & purificación , TemperaturaRESUMEN
Trichosporon yeasts are widely employed to produce lipids, lipases, and aspartic peptidases, but there are no previous studies on collagenase production. This work aimed to select the best collagenase producing Amazonian Trichosporon strains. Moreover, a 23-full factorial design (FFD) and a 22-central composite design combined with Response Surface Methodology were applied to optimize production and find the best conditions for hydrolysis of type I bovine collagen. Most of the studied strains had some collagenolytic activity, but the selected one achieved the highest value (44.02 U) and a biomass concentration of 2.31 g/L. The best collagenase production conditions were 160 rpm of agitation, pH 5.5 and a substrate concentration of 4.0 g/L. The former experimental design showed that substrate concentration was the only statistically significant factor on both biomass concentration and collagenase activity, while the latter showed simultaneous effects of substrate concentration and pH on collagenolytic activity, which peaked at pH 5.5-6.4 and substrate concentration of 3.0-3.4 g/L. An additional 2³-FFD was finally used to optimize the conditions collagen hydrolysis, and pH 6, 25 °C and a substrate concentration of 7.5 (g/L) ensured the highest hydrolysis degree. This study is the first that describes optimized conditions of collagenase production by Trichosporon strains.
Asunto(s)
Trichosporon , Animales , Abejas , Bovinos , Colágeno , Colagenasas , Lípidos , PolenRESUMEN
This study aimed to better characterize a recently purified stable extracellular alkaline peptidase produced by Penicillium aurantiogriseum (URM 4622) through fluorescence spectroscopy, far-UV circular dichroism, kinetic and thermodynamic models to understand its' structure-activity and denaturation. Fluorescence data showed that changing pH leads to tryptophan residues exposure to more hydrophilic environments at optimum activity pH 9.0 and 10.0. When thermally treated, it displayed less unfolding at these pH values, along with 4-fold less photoproducts formation than at neutral pH. Different pH CD spectra showed more ß-sheet (21.5-43.0%) than α-helix (1-6.2%). At pH9.0, more than 2-fold higher α-helix content than any other pH. The melting temperature (Tm) was observed between 50 and 60 °C at all pH studied, with lower Tm at pH 9.0-11.0 (54.9-50.3 °C). The protease displayed two phase transition, with two energies of denaturation, and a 4-fold higher thermal stability (ΔH°m) than reports for other microorganism's proteases. An irreversible folding transition occurs between 50 and 60 °C. It displayed energies of denaturation suggesting higher thermal stability than reported for other microorganism's proteases. These results help elucidating the applicability of this new stable protease.
Asunto(s)
Péptido Hidrolasas , Pliegue de Proteína , Dicroismo Circular , Endopeptidasas , Concentración de Iones de Hidrógeno , Penicillium , Desnaturalización Proteica , Espectrometría de Fluorescencia , Temperatura , TermodinámicaRESUMEN
ß-Galactosidase production, partial purification and characterization by a new fungal were investigated. Partial purification was performed by aqueous two-phase system (ATPS) using polyethylene glycol (PEG) molar mass, PEG concentration, citrate concentration and pH as the independent variables. Purification factor (PF), partition coefficient (K) and yield (Y) were the responses. After identification by rDNA sequencing and classification as Cladosporium tenuissimum URM 7803, this isolate achieved a maximum cell concentration and ß-galactosidase activity of 0.48 g/L and 462.1 U/mL, respectively. ß-Galactosidase partitioned preferentially for bottom salt-rich phase likely due to hydrophobicity and volume exclusion effect caused in the top phase by the high PEG concentration and molar mass. The highest value of PF (12.94) was obtained using 24% (w/w) PEG 8000 g/mol and 15% (w/w) citrate, while that of Y (79.76%) using 20% (w/w) PEG 400 g/mol and 25% (w/w) citrate, both at pH 6. The enzyme exhibited optimum temperature in crude and ATPS extracts in the ranges 35-50 °C and 40-55 °C, respectively, and optimum pH in the range 3.0-4.5, with a fall of enzyme activity under alkaline conditions. Some metal ions and detergents inhibited, while others stimulated enzyme activity. Finally, C. tenuissimum URM 7803 ß-galactosidase showed a profile suitable for prebiotics production.
Asunto(s)
Cladosporium/enzimología , Polietilenglicoles/química , beta-Galactosidasa/química , Biotecnología , Citratos , ADN/análisis , Detergentes/química , Fermentación , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Iones , Hierro/química , Lactosa/química , Microscopía Electrónica de Rastreo , Filogenia , Reacción en Cadena de la Polimerasa , Prebióticos , Análisis de Secuencia de ADN , Temperatura , Agua/química , beta-Galactosidasa/aislamiento & purificaciónRESUMEN
Lovastatin is a drug in the statin class which acts as a natural inhibitor of 3-hydroxy-3-methylglutaryl, a coenzyme reductase reported as being a potential therapeutic agent for several diseases: Alzheimer's, multiple sclerosis, osteoporosis and due to its anti-cancer properties. Aspergillus terreus is known for producing a cholesterol reducing drug. This study sets out to evaluate the production of lovastatin by Brazilian wild strains of A. terreus isolated from a biological sample and natural sources. Carbon and nitrogen sources and the best physicochemical conditions using factorial design were also evaluated. The 37 fungal were grown to produce lovastatin by submerged fermentation. A. terreus URM5579 strain was the best lovastatin producer with a level of 13.96 mg/L. Soluble starch and soybean flour were found to be the most suitable substrates for producing lovastatin (41.23 mg/L) and biomass (6.1 mg/mL). The most favorable production conditions were found in run 16 with 60 g/L soluble starch, 15 g/L soybean flour, pH 7.5, 200 rpm and maintaining the solution at 32 °C for 7 days, which led to producing 100.86 mg/L of lovastatin and 17.68 mg/mL of biomass. Using natural strains and economically viable substrates helps to optimize the production of lovastatin and promote its use.
Asunto(s)
Aspergillus/metabolismo , Biotecnología/métodos , Lovastatina/biosíntesis , Biomasa , Brasil , Carbono , Colesterol/química , Cromatografía Líquida de Alta Presión , Fermentación , Concentración de Iones de Hidrógeno , Nitrógeno , Glycine max , Espectrofotometría Ultravioleta , Almidón/química , Temperatura , Factores de TiempoRESUMEN
The partitioning and purification of lectins from the crude extract of Cratylia mollis seeds (Cramoll 1,4) was investigated in aqueous two-phase systems (ATPS). A factorial design model (24) was used to evaluate the influence of polyethylene glycol (PEG) molar mass (1500-8000 g/mol), PEG concentration (12.5-17.5% w/w), phosphate (10-15% w/w) concentration, and pH (6-8) on the differential partitioning, purification factor, and yield of the lectin. Polymer and salt concentration were the most important variables affecting partition of lectin and used to find optimum purification factor by experimental Box-Behnken design together with the response surface methodology (RSM). ATPS showed best conditions composed by 13.9% PEG1500, 15.3% phosphate buffer at pH 6, which ensured purification factor of 4.70. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of protein with 26.1 kDa. Furthermore, results demonstrated a thermostable lectin presenting activity until 60 °C and lost hemagglutinating activity at 80 °C. According to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of lectins.
Asunto(s)
Lectinas/química , Lectinas/aislamiento & purificación , Phaseolus/química , Extractos Vegetales/química , Electroforesis en Gel de Poliacrilamida , Hemaglutininas/química , Concentración de Iones de Hidrógeno , Fosfatos/química , Polietilenglicoles/química , Proteínas/química , Semillas/química , Espectrofotometría , Propiedades de Superficie , TemperaturaRESUMEN
The fibrinolytic enzyme produced by Mucor subtilissimus UCP 1262 was obtained by solid fermentation and purified by ion exchange chromatography using DEAE-Sephadex A50. The enzyme toxicity was evaluated using mammalian cell lineages: HEK-293, J774.A1, Sarcoma-180 and PBMCs which appeared to be viable at a level of 80%. The biochemical parameters of the mice treated with an acute dose of enzyme (2000 mg/mL) identified alterations of AST and ALT and the histomorphometric analysis of the liver showed a loss of endothelial cells (Pâ¯<â¯0.001). However, these changes are considered minimal to affirm that there was a significant degree of hepatotoxicity. The comet assay and the micronucleus test did not identify damage in the DNA of the erythrocytes of the animals treated. The protease did not degrade the Aα and Bß chains of human and bovine fibrinogens, thus indicating that it does not act as anticoagulant, but rather as a fibrinolytic agent. The assay performed to assess blood biocompatibility shows that at dose of 0.3-5â¯mg/mL the hemolytic grade is considered insignificant. Moreover, the enzyme did not prolong bleeding time in mice when dosed with 1â¯mg/kg. These results indicate that this enzyme produced is a potential competitor for developing novel antithrombotic drugs.
Asunto(s)
Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Fibrinolíticos/toxicidad , Mucor/enzimología , Péptido Hidrolasas/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Fibrinolíticos/administración & dosificación , Fibrinolíticos/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Péptido Hidrolasas/administración & dosificación , Péptido Hidrolasas/metabolismoRESUMEN
A new set of applications can be achieved when using high stability proteases. Industrially, high costs can be related to production medium and purification process. Magnetic nanoparticles have been successfully used for rapid and scalable purification. In this work, azocasein were immobilized on magnetite nanoparticles and applied in a single step purification of protease produced by Penicillium aurantiogriseum using soybean flour medium, and the new purified enzyme was characterized. Glutaraldehyde activated nanoparticles were used in azocasein immobilization and then incubated with dialyzed 60-80% saline precipitation fraction of crude extract for purification. Adsorbents were washed 7 times (0.1â¯M NaCl solution) and eluted 3 times (1â¯M NaCl solution), these final elutions contained the purified protease. This protease was purified 55.68-fold, retaining 46% of its original activity. Presented approximately 40â¯kDa on SDS-PAGE and optimum activity at 45⯰C and pH 9.0. Maintained over 60% of activity from pH 6.0 to 11.0. Kept more than 50% activity from 15 to 55⯰C, did not lose any activity over 48â¯hâ¯at 25⯰C. Inhibitors assay suggested a serine protease with aspartic residues on its active site. Results report a successful application of an alternative purification method and novel broad pH tolerant protease.
Asunto(s)
Proteínas Fúngicas/aislamiento & purificación , Nanopartículas de Magnetita/química , Penicillium/enzimología , Serina Proteasas/aislamiento & purificación , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Caseínas/química , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Peso Molecular , Serina Proteasas/química , Serina Proteasas/metabolismoRESUMEN
The therapeutic use of probiotics for supporting the antibiotic action against gastrointestinal disorders is a current trend and emerging applications have gained popularity because of their support for various microbiological activities in digestive processes. Microorganisms isolated from kefir with great probiotic properties, in addition to high resistance to harsh environmental conditions, have been widely researched. Administration of probiotic yeasts offers a number of advantages, when compared to bacteria, because of particular characteristics as their larger cell size. In the present study, 28 strains of Saccharomyces cerevisiae were isolated, after in vitro digestion of kefir-fermented milk, and identified by molecular based approaches. A screening was performed to determine important quality requirements for probiotics including: antagonistic and antioxidant activities, ß-galactosidase synthesis, autoaggregation, surface hydrophobicity and adhesion to epithelial cells. The results showed strains: with antagonistic activity against microbial pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis; able to produce ß-galactosidase; with antioxidant activity levels higher than 90%; with hydrophobicity activity and autoaggregation ability (evaluated by adhesion test, where all the strains presented adhesion to mice ileal epithelial cells). These findings are relevant and the strains are recommended for further in vivo studies as well as for potential therapeutic applications.
Asunto(s)
Kéfir/microbiología , Leche/microbiología , Probióticos/aislamiento & purificación , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/fisiología , Animales , Antibiosis , Antioxidantes/análisis , Brasil , Adhesión Celular , Enzimas/metabolismo , Células Epiteliales/microbiología , Fermentación , Ratones , Saccharomyces cerevisiae/genéticaRESUMEN
Collagenases are proteolytic enzymes capable of degrading both native and denatured collagen, reported to be applied in industrial, medical and biotechnological sectors. Liquid-liquid extraction using aqueous two-phase system (ATPS) is one of the most promising bioseparation techniques, which can substitute difficult solid-liquid separation processes, offering many advantages over conventional methods including low-processing time, low-cost material and low-energy consumption. The collagenase produced by Penicillium sp. UCP 1286 showed a stronger affinity for the bottom salt-rich phase, where the highest levels of collagenolytic activity were observed at the center point runs, using 15.0% (w/w) PEG 3350 g/mol and 12.5% (w/w) phosphate salt at pH 7.0 and concentration. The enzyme was characterized by thermal stability, pH tolerance and effect of inhibitors, showing optimal collagenolytic activity at 37 °C and pH 9.0 and proved to be a serine protease. ATPS showed high efficiency in the collagenase purification, confirmed by a single band in SDS/PAGE, and can in fact be applied as a quick and inexpensive alternative method.
Asunto(s)
Colagenasas/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Penicillium/enzimología , Fosfatos/química , Polietilenglicoles/química , Colagenasas/química , Proteínas Fúngicas/químicaRESUMEN
An extracellular collagenolytic serine protease was purified from Aspergillus sp., isolated from the Caatinga biome in northeast Brazil by a two-step chromatographic procedure, using an anion-exchanger and gel filtration. The enzyme was produced by submerged fermentation of feather residue as a substrate. The purified collagenase showed a 2.09-fold increase in specific activity and 22.85% yield. The enzyme was a monomeric protein with a molecular mass of 28.7 kDa, estimated by an SDS-PAGE and AKTA system. The optimum temperature and pH for enzyme activity were around 40°C and pH 8.0, respectively. The enzyme was strongly inhibited by phenyl-methylsulfonyl fluoride, a serine protease inhibitor, and was thermostable until 65°C for 1 h. We then evaluated the enzyme's potential for degradation of Type I and Type V collagens for producing peptides with antifungal activity. Our results revealed that the cleavage of Type V collagen yielded more effective peptides than Type I, inhibiting growth of Aspergillus terreus, Aspergillus japonicus and Aspergillus parasiticus. Both groups of peptides (Type I and Type V) were identified by SDS-PAGE. To conclude, the thermostable collagenase we purified in this study has various potentially useful applications in the fields of biochemistry, biotechnology and biomedical sciences.
Asunto(s)
Aspergillus/metabolismo , Biotecnología/métodos , Colagenasas/aislamiento & purificación , Colagenasas/metabolismo , Plumas/metabolismo , Residuos , Animales , Antifúngicos/farmacología , Pollos , Colagenasas/farmacología , Estabilidad de Enzimas , Fermentación , Concentración de Iones de Hidrógeno , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Peso Molecular , Fragmentos de Péptidos/farmacología , Temperatura , Inhibidores de Tripsina/farmacologíaRESUMEN
Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu2+, Mg2+, and Fe2+. The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.
Asunto(s)
Mucor , Secuencia de Aminoácidos , Dipéptidos , Concentración de Iones de Hidrógeno , Peso Molecular , Péptido Hidrolasas , TemperaturaRESUMEN
This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides' obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (24) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays. Optimal conditions for immobilization were 2 hr of immobilization, offered protein amount of 200 µg/mL, immobilization pH of 6.3 and 7.3 hr of activation. Derivative keeps over 74% of its original activity after reused five times. Free and immobilized enzyme casein hydrolysates presented similar peptide mass fingerprints, and prevalent peptides could be sequenced. Hydrolysates presented more than 2.5× higher ROS scavenging activity than nonhydrolyzed casein, which validates the immobilized protease capacity to develop casein-derived natural ingredients with potential for functional foods.