Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nucl Med ; 57(8): 1302-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27056616

RESUMEN

UNLABELLED: Experimental and clinical evidence suggests that neuroinflammation, triggered by epileptogenic insults, contributes to seizure development. We used translocator protein-targeted molecular imaging to obtain further insights into the role of microglial activation during epileptogenesis. METHODS: As epileptogenic insult, a status epilepticus (SE) was induced in rats by lithium pilocarpine. Rats were subjected to (11)C-PK11195 PET scans before SE; at 4 h after SE; at 1, 2, 5, 7, 14, and 22 d after SE; and at 14-16 wk after SE. For data evaluation, brain regions were outlined by coregistration with a standard rat brain atlas, and percentage injected dose/cm(3) and binding potential (simplified reference tissue model with cerebellar gray matter as a reference region) were calculated. For autoradiography and immunohistochemical evaluation, additional rats were decapitated without prior SE or 2, 5, or 14 d after SE. RESULTS: After SE, increases in (11)C-PK11195 uptake and binding potential were evident in epileptogenesis-associated brain regions, such as the hippocampus, thalamus, or piriform cortex, but not in the cerebellum beginning at 2-5 d and persisting at least 3 wk after SE. Maximal regional signal was observed at 1-2 wk after SE. Autoradiography confirmed the spatiotemporal profile. Immunohistochemical evaluation revealed microglial and astroglial activation as well as neuronal cell loss in epileptogenesis-associated brain regions at all investigated time points. The time course of microglial activation was consistent with that demonstrated by tracer techniques. CONCLUSION: Translocator protein-targeted PET is a reliable tool for identifying brain inflammation during epileptogenesis. Neuroinflammation mainly affects brain regions commonly associated with seizure generation and spread. Definition of the time profile of neuroinflammation may facilitate the development of inflammation-targeted, antiepileptogenic therapy.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/diagnóstico por imagen , Epilepsia/metabolismo , Isoquinolinas/farmacocinética , Microglía/metabolismo , Receptores de GABA/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Femenino , Patología Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Pharmaceuticals (Basel) ; 7(4): 392-418, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24699244

RESUMEN

Nanomedicine has become an emerging field in imaging and therapy of malignancies. Nanodimensional drug delivery systems have already been used in the clinic, as carriers for sensitive chemotherapeutics or highly toxic substances. In addition, those nanodimensional structures are further able to carry and deliver radionuclides. In the development process, non-invasive imaging by means of positron emission tomography (PET) represents an ideal tool for investigations of pharmacological profiles and to find the optimal nanodimensional architecture of the aimed-at drug delivery system. Furthermore, in a personalized therapy approach, molecular imaging modalities are essential for patient screening/selection and monitoring. Hence, labeling methods for potential drug delivery systems are an indispensable need to provide the radiolabeled analog. In this review, we describe and discuss various approaches and methods for the labeling of potential drug delivery systems using positron emitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA