Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675159

RESUMEN

Dysfunction of the immune system and mitochondrial metabolism has been associated with Parkinson's disease (PD) pathology. Mutations and increased kinase activity of leucine-rich repeat kinase 2 (LRRK2) are linked to both idiopathic and familial PD. However, the function of LRRK2 in the immune cells under inflammatory conditions is contradictory. Our results showed that lipopolysaccharide (LPS) stimulation increased the kinase activity of LRRK2 in parental RAW 264.7 (WT) cells. In addition to this, LRRK2 deletion in LRRK2 KO RAW 264.7 (KO) cells altered cell morphology following LPS stimulation compared to the WT cells, as shown by an increase in the cell impedance as observed by the xCELLigence measurements. LPS stimulation caused an increase in the cellular reactive oxygen species (ROS) levels in both WT and KO cells. However, WT cells displayed a higher ROS level compared to the KO cells. Moreover, LRRK2 deletion led to a reduction in interleukin-6 (IL-6) inflammatory cytokine and cyclooxygenase-2 (COX-2) expression and an increase in lactate production after LPS stimulation compared to the WT cells. These data illustrate that LRRK2 has an effect on inflammatory processes in RAW macrophages upon LPS stimulation.


Asunto(s)
Lipopolisacáridos , Transducción de Señal , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno , Macrófagos/metabolismo , Mutación
2.
Proc Natl Acad Sci U S A ; 114(47): E10092-E10101, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109256

RESUMEN

Eukaryotic cells chemotax in a wide range of chemoattractant concentration gradients, and thus need inhibitory processes that terminate cell responses to reach adaptation while maintaining sensitivity to higher-concentration stimuli. However, the molecular mechanisms underlying inhibitory processes are still poorly understood. Here, we reveal a locally controlled inhibitory process in a GPCR-mediated signaling network for chemotaxis in Dictyostelium discoideum We identified a negative regulator of Ras signaling, C2GAP1, which localizes at the leading edge of chemotaxing cells and is activated by and essential for GPCR-mediated Ras signaling. We show that both C2 and GAP domains are required for the membrane targeting of C2GAP1, and that GPCR-triggered Ras activation is necessary to recruit C2GAP1 from the cytosol and retains it on the membrane to locally inhibit Ras signaling. C2GAP1-deficient c2gapA- cells have altered Ras activation that results in impaired gradient sensing, excessive polymerization of F actin, and subsequent defective chemotaxis. Remarkably, these cellular defects of c2gapA- cells are chemoattractant concentration dependent. Thus, we have uncovered an inhibitory mechanism required for adaptation and long-range chemotaxis.


Asunto(s)
Quimiotaxis/genética , Dictyostelium/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Protozoarias/genética , Proteínas ras/genética , Actinas/genética , Actinas/metabolismo , Adaptación Fisiológica , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quimiotaxis/efectos de los fármacos , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Dictyostelium/efectos de los fármacos , Dictyostelium/genética , Dictyostelium/ultraestructura , Proteínas Activadoras de GTPasa/deficiencia , Regulación de la Expresión Génica , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Transducción de Señal , Proteínas ras/metabolismo
3.
BMC Cell Biol ; 17: 1, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26744136

RESUMEN

BACKGROUND: The small G-protein Rap1 is an important regulator of cellular adhesion in Dictyostelium, however so far the downstream signalling pathways for cell adhesion are not completely characterized. In mammalian cells talin is crucial for adhesion and Rap1 was shown to be a key regulator of talin signalling. RESULTS: In a proteomic screen we identified TalinB as a potential Rap1 effector in Dictyostelium. In subsequent pull-down experiments we demonstrate that the Ras association (RA) domain of TalinB interacts specifically with active Rap1. Studies with a mutated RA domain revealed that the RA domain is essential for TalinB-Rap1 interaction, and that this interaction contributes to cell-substrate adhesion during single-celled growth and is crucial for cell-cell adhesion during multicellular development. CONCLUSIONS: Dictyostelium Rap1 directly binds to TalinB via the conserved RA domain. This interaction is critical for adhesion, which becomes essential for high adhesive force demanding processes, like morphogenesis during multicellular development of Dictyostelium. In mammalian cells the established Rap1-talin interaction is indirect and acts through the scaffold protein - RIAM. Interestingly, direct binding of mouse Rap1 to the RA domain of Talin1 has recently been demonstrated.


Asunto(s)
Adhesión Celular , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Secuencia de Aminoácidos , Animales , Dictyostelium/citología , Dictyostelium/genética , Dictyostelium/crecimiento & desarrollo , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas de Unión al GTP rap1/genética
4.
Front Immunol ; 13: 1075386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524124

RESUMEN

Phagocytosis, macropinocytosis, and G protein coupled receptor-mediated chemotaxis are Ras-regulated and actin-driven processes. The common regulator for Ras activity in these three processes remains unknown. Here, we show that C2GAP2, a Ras GTPase activating protein, highly expressed in the vegetative growth state in model organism Dictyostelium. C2GAP2 localizes at the leading edge of chemotaxing cells, phagosomes during phagocytosis, and macropinosomes during micropinocytosis. c2gapB- cells lacking C2GAP2 displayed increased Ras activation upon folic acid stimulation and subsequent impaired chemotaxis in the folic acid gradient. In addition, c2gaB- cells have elevated phagocytosis and macropinocytosis, which subsequently results in faster cell growth. C2GAP2 binds multiple phospholipids on the plasma membrane and the membrane recruitment of C2GAP2 requires calcium. Taken together, we show a shared negative regulator of Ras signaling that mediates Ras signaling for chemotaxis, phagocytosis, and macropinocytosis.


Asunto(s)
Dictyostelium , Dictyostelium/metabolismo , Quimiotaxis , Pinocitosis/fisiología , Fagocitosis , Ácido Fólico
5.
Front Cell Dev Biol ; 9: 725073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395450

RESUMEN

Chemotaxis, which is G protein-coupled receptor (GPCR)-mediated directional cell migration, plays pivotal roles in diverse human diseases, including recruitment of leukocytes to inflammation sites and metastasis of cancer. It is still not fully understood how eukaryotes sense and chemotax in response to chemoattractants with an enormous concentration range. A genetically traceable model organism, Dictyostelium discoideum, is the best-studied organism for GPCR-mediated chemotaxis. Recently, we have shown that C2GAP1 controls G protein coupled receptor-mediated Ras adaptation and chemotaxis. Here, we investigated the molecular mechanism and the biological function of C2GAP1 membrane targeting for chemotaxis. We show that calcium and phospholipids on the plasma membrane play critical roles in membrane targeting of C2GAP1. Cells lacking C2GAP1 (c2gapA -) displayed an improved chemotaxis in response to chemoattractant gradients at subsensitive or low concentrations (<100 nM), while exhibiting impaired chemotaxis in response to gradients at high concentrations (>1 µM). Taken together, our results demonstrate that the membrane targeting of C2GAP1 enables Dictyostelium to sense chemoattractant gradients at a higher concentration range. This mechanism is likely an evolutionarily conserved molecular mechanism of Ras regulation in the adaptation and chemotaxis of eukaryotes.

6.
Mol Biol Cell ; 32(20): ar8, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347507

RESUMEN

In Dictyostelium, chemoattractants induce a fast cGMP response that mediates myosin filament formation in the rear of the cell. The major cGMP signaling pathway consists of a soluble guanylyl cyclase sGC, a cGMP-stimulated cGMP-specific phosphodiesterase, and the cGMP-target protein GbpC. Here we combine published experiments with many unpublished experiments performed in the past 45 years on the regulation and function of the cGMP signaling pathway. The chemoattractants stimulate heterotrimeric Gαßγ and monomeric Ras proteins. A fraction of the soluble guanylyl cyclase sGC binds with high affinity to a limited number of membrane binding sites, which is essential for sGC to become activated by Ras and Gα proteins. sGC can also bind to F-actin; binding to branched F-actin in pseudopods enhances basal sGC activity, whereas binding to parallel F-actin in the cortex reduces sGC activity. The cGMP pathway mediates cell polarity by inhibiting the rear: in unstimulated cells by sGC activity in the branched F-actin of pseudopods, in a shallow gradient by stimulated cGMP formation in pseudopods at the leading edge, and during cAMP oscillation to erase the previous polarity and establish a new polarity axis that aligns with the direction of the passing cAMP wave.


Asunto(s)
GMP Cíclico/metabolismo , Dictyostelium/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Factores Quimiotácticos/metabolismo , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , GMP Cíclico/genética , Dictyostelium/genética , Guanilato Ciclasa/metabolismo , Transporte de Proteínas , Seudópodos/metabolismo , Transducción de Señal/fisiología
7.
Curr Biol ; 30(15): 2912-2926.e5, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32531280

RESUMEN

Engulfment of extracellular material by phagocytosis or macropinocytosis depends on the ability of cells to generate specialized cup-shaped protrusions. To effectively capture and internalize their targets, these cups are organized into a ring or ruffle of actin-driven protrusion encircling a non-protrusive interior domain. These functional domains depend on the combined activities of multiple Ras and Rho family small GTPases, but how their activities are integrated and differentially regulated over space and time is unknown. Here, we show that the amoeba Dictyostelium discoideum coordinates Ras and Rac activity using the multidomain protein RGBARG (RCC1, RhoGEF, BAR, and RasGAP-containing protein). We find RGBARG uses a tripartite mechanism of Ras, Rac, and phospholipid interactions to localize at the protruding edge and interface with the interior of both macropinocytic and phagocytic cups. There, we propose RGBARG shapes the protrusion by expanding Rac activation at the rim while suppressing expansion of the active Ras interior domain. Consequently, cells lacking RGBARG form enlarged, flat interior domains unable to generate large macropinosomes. During phagocytosis, we find that disruption of RGBARG causes a geometry-specific defect in engulfing rod-shaped bacteria and ellipsoidal beads. This demonstrates the importance of coordinating small GTPase activities during engulfment of more complex shapes and thus the full physiological range of microbes, and how this is achieved in a model professional phagocyte.


Asunto(s)
Bacterias , Dictyostelium/citología , Dictyostelium/metabolismo , Dictyostelium/fisiología , Fagocitosis , Pinocitosis , Proteínas de Unión al GTP rac/metabolismo , Proteínas ras/metabolismo , Proteínas de Ciclo Celular , Dictyostelium/inmunología
8.
Nat Commun ; 8(1): 1008, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044096

RESUMEN

Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlorobium/enzimología , Guanosina Trifosfato/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Bacterianas/genética , Chlorobium/química , Chlorobium/genética , Dimerización , Humanos , Hidrólisis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Estructura Terciaria de Proteína
9.
Sci Rep ; 6: 25823, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27172998

RESUMEN

Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.


Asunto(s)
Dictyostelium/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Secuencia Conservada , Modelos Biológicos , Fosforilación , Unión Proteica , Proteínas Protozoarias/metabolismo
10.
Biosci Rep ; 35(5)2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26310572

RESUMEN

Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labelling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains that, in contrast, are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat (LRR) kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum Roc/COR interface significantly influence the structure and nt-induced conformational changes of the Roc domains.


Asunto(s)
Proteínas Bacterianas/química , Chlorobium/química , Enfermedad de Parkinson/genética , Mutación Puntual , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlorobium/genética , Chlorobium/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedad de Parkinson/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA