Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Microsc Microanal ; : 1-10, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35232524

RESUMEN

Developing tissues have intricate, three-dimensional (3D) organizations of cells and extracellular matrix (ECM) that provide the framework necessary to meet morphogenic and necessary demands. Migrating cells, in vivo, are exposed to numerous conflicting signals: chemokines, ECM, growth factors, and physical forces. While most of these have been studied individually in vivo or in vitro, our understanding of how cells integrate these various signals is lacking. We previously developed a novel self-organizing cellularized collagen hydrogel model that is adaptable, tunable, reproducible, and capable of mimicking the multitude of stimuli that cells experience. Our model produced self-assembled toroids of cells that were formed by 24 h. Data we present here show toroids initially form as early as 3 h after seeding. Additionally, toroids formed when cells were seeded on various collagen subtypes and were sensitive to the composition of the hydrogel. Moreover, we found differences in remodeling in toroid gels compared to gels with cells embedded in them using both a collagen binding peptide and rheology. Using scanning electron microscopy, we observed toroids forming a crater-like structure compared to whole gel contractions in mixed in gels. Finally, when multiple cells were mixed prior to seeding, heterogeneous toroids formed with some containing clusters of cells.

2.
Dev Dyn ; 247(3): 531-541, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28884516

RESUMEN

BACKGROUND: The formation of healthy heart valves throughout embryonic development is dependent on both genetic and epigenetic factors. Hemodynamic stimuli are important epigenetic regulators of valvulogenesis, but the resultant molecular pathways that control valve development are poorly understood. Here we describe how the heart and valves recover from the removal of a partial constriction (banding) of the OFT/ventricle junction (OVJ) that temporarily alters blood flow velocity through the embryonic chicken heart (HH stage 16/17). Recovery is described in terms of 24- and 48-hr gene expression, morphology, and OVJ hemodynamics. RESULTS: Collectively, these studies show that after 24 hr of recovery, important epithelial-mesenchymal transformation (EMT) genes TGFßRIII and Cadherin 11 (CDH11) transcript levels normalize return to control levels, in contrast to Periostin and TGFß,3 which remain altered. In addition, after 48 hr of recovery, TGFß3 and CDH11 transcript levels remain normalized, whereas TGFßRIII and Periostin are down-regulated. Analyses of OFT cushion volumes in the hearts show significant changes, as does the ratio of cushion to cell volume at 24 hr post band removal (PBR). Morphologically, the hearts show visible alteration following band removal when compared to their control age-matched counterparts. CONCLUSIONS: Although some aspects of the genetic/cellular profiles affected by altered hemodynamics seem to be reversed, not all gene expression and cardiac growth normalize following 48 hr of band removal. Developmental Dynamics 247:531-541, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Constricción , Válvulas Cardíacas/embriología , Corazón/embriología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Embrión de Pollo , Expresión Génica , Hemodinámica , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
3.
J Vasc Res ; 55(5): 255-267, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30179877

RESUMEN

Adaptive remodeling processes are essential to the maintenance and viability of coronary artery bypass grafts where clinical outcomes depend strongly on the tissue source. In this investigation, we utilized an ex vivo perfusion bioreactor to culture porcine analogs of common human bypass grafts: the internal thoracic artery (ITA), the radial artery (RA), and the great saphenous vein (GSV), and then evaluated samples acutely (6 h) and chronically (7 days) under in situ or coronary-like perfusion conditions. Although morphologically similar, primary cells harvested from the ITA illustrated lower intimal and medial, but not adventitial, cell proliferation rates than those from the RA or GSV. Basal gene expression levels were similar in all vessels, with only COL3A1, SERPINE1, FN1, and TGFB1 being differentially expressed prior to culture; however, over half of all genes were affected nominally by the culturing process. When exposed to coronary-like conditions, RAs and GSVs experienced pathological remodeling not present in ITAs or when vessels were studied in situ. Many of the remodeling genes perturbed at 6 h were restored after 7 days (COL3A1, FN1, MMP2, and TIMP1) while others (SERPINE1, TGFB1, and VCAM1) were not. The findings elucidate the potential mechanisms of graft failure and highlight strategies to encourage healthy ex vivo pregraft conditioning.


Asunto(s)
Arterias Mamarias/patología , Perfusión , Arteria Radial/patología , Vena Safena/patología , Técnicas de Cultivo de Tejidos , Remodelación Vascular , Animales , Reactores Biológicos , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Arterias Mamarias/metabolismo , Perfusión/instrumentación , Arteria Radial/metabolismo , Vena Safena/metabolismo , Transducción de Señal , Sus scrofa , Factores de Tiempo , Técnicas de Cultivo de Tejidos/instrumentación , Remodelación Vascular/genética
4.
Dev Biol ; 374(2): 345-56, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23261934

RESUMEN

Fibrous development of the extracellular matrix (ECM) of cardiac valves is necessary for proper heart function. Pathological remodeling of valve ECM is observed in both pediatric and adult cardiac disorders. It is well established that intracardiac hemodynamics play a significant role in the morphogenesis of cardiovascular tissues. However, the mechanisms that transduce mechanical forces into morphogenetic processes are not well understood. Here, we report the development of a three-dimensional, in vitro culture system that allows for culture of embryonic valve tissue under specific pulsatile flow conditions. This system was used to investigate the role that fluid flow plays in fibrous ECM expression during valve formation and to test the underlying cellular mechanisms that regulate this mechanotransduction. When cultured under pulsatile flow, developing valve tissues upregulated fibrous ECM expression at both the transcript and protein levels in comparison to no-flow controls. Flow-cultured valve tissues also underwent morphological development, as cushions elongated into leaflet-like structures that were absent in no-flow controls. Furthermore, rhoA, a member of the cytoskeletal actin-regulating GTPase family of proteins, was upregulated and activated by flow culture. Inhibition of the downstream rhoA effector kinase, ROCK, blocked flow-driven fibrous ECM accumulation and tissue stiffening, while the addition of lysophosphatidic acid (LPA), a rhoA activator, stimulated fibrous ECM deposition and tissue stiffening. These results support a prominent role for the rhoA pathway in the mechanotransduction of hemodynamic forces during fibrous remodeling of developing valve tissue. Our results also point to a potential link between regulation of the actinomyosin cytoskeleton and fibrous ECM synthesis in cardiovascular tissues.


Asunto(s)
Proteínas Aviares/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Válvulas Cardíacas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Amidas/farmacología , Animales , Proteínas Aviares/genética , Western Blotting , Embrión de Pollo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Válvulas Cardíacas/embriología , Lisofosfolípidos/farmacología , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica , Microscopía Confocal , Piridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Mecánico , Tenascina/genética , Factores de Tiempo , Técnicas de Cultivo de Tejidos/métodos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética
5.
Exp Eye Res ; 115: 178-88, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23876491

RESUMEN

The ability to safely and quickly close wounds and lacerations is an area of need in regenerative medicine, with implications toward healing a wide range of tissues and wounds. Using an in vivo corneal injury model, our study applied a newly developed peptide capable of promotion of wound healing and epithelial regeneration. The alpha-carboxy terminus 1 (αCT1) peptide is a 25 amino acid peptide from the C-terminus of connexin 43 (Cx43), modified to promote cellular uptake. Previous studies applying αCT1 to excisional skin wounds in porcine models produced tissues having an overall reduced level of scar tissue and decreased healing time. Rapid metabolism of αCT1 in previous work led to the investigation of extended release on wound healing rate used in this study. Here we delivered αCT1 both directly, in a concentrated pluronic solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules. Cell toxicity analysis showed minimal cell-loss with microcapsule treatment. Measurement of wound healing using histology and fluorescence microscopy indicated significant reduction in healing time of αCT1 microcapsule treated rat corneas compared with controls (88% vs. 38%). RT-PCR analysis showed an initial up regulation followed by down regulation of the gene keratin-19 (Krt19). Zonula occludens 1 (ZO-1) showed an opposite down regulation followed by an up regulation whereas Cx43 showed a biphasic response. Inflammatory indexes demonstrated a reduction in the inflammation of corneas treated with αCT1 microcapsules when compared with pluronic gel vehicle. These results suggest αCT1, when applied in a sustained release system, acts as a beneficial wound healing treatment.


Asunto(s)
Materiales Biomiméticos , Conexina 43/farmacología , Lesiones de la Cornea , Lesiones Oculares/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Cápsulas , Conexina 43/química , Conexina 43/genética , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Lesiones Oculares/metabolismo , Lesiones Oculares/patología , Técnica del Anticuerpo Fluorescente Indirecta , Queratina-19/genética , Queratina-19/metabolismo , Masculino , Microscopía Fluorescente , Fragmentos de Péptidos/química , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
6.
Microsc Microanal ; 19(4): 842-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23742986

RESUMEN

During heart valve development, epithelial-mesenchymal transformation (EMT) is a key process for valve formation. EMT leads to the generation of mesenchymal cells that will eventually become the interstitial cells (fibroblasts) of the mature valve. During EMT, cell architecture and motility change markedly; significant changes are also observed in various signaling pathways. Here we systematically examined the expression, localization, and function of zyxin, a focal adhesion protein, in EMT during atrioventricular (AV) valve morphogenesis. Expression and localization studies showed that zyxin was expressed in the AV canal region during crucial stages of valve development. An in vitro 3D collagen gel culture system was used to determine zyxin function either after siRNA gene knockdown or after overexpression. Our studies revealed that zyxin overexpression inhibited endocardial cell migration and cell differentiation and also led to a decrease in the number of migrating mesenchymal cells. Moreover, correlative cytoskeletal changes were apparent in response to both overexpression and knockdown treatments. Thus, zyxin appears to play a role as a regulator of cell migration and differentiation during EMT in chicken AV valve formation.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Expresión Génica , Válvulas Cardíacas/embriología , Zixina/biosíntesis , Animales , Embrión de Pollo , Silenciador del Gen , Morfogénesis
7.
Microsc Microanal ; 19(1): 213-26, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23360728

RESUMEN

A need exists to prolong the release of rapidly metabolized peptides of a low molecular weight, while delivering this peptide without environmental interference. Previous studies have used bovine serum albumin (BSA) as a model peptide to study release characteristics from alginate microcapsules. BSA is 66 kDa in size, while the peptide of interest here, connexin-43 carboxyl-terminus mimetic peptide (αCT1), is only 3.4 kDa. Such a change in size results in a much different set of release parameters. Our overall goal is a sustained release over a 24+ h period. Prolonged application of the peptide to a wound site to investigate therapeutic effects is ideal. As a result, a diffusion method using alginate microcapsules, along with the addition of poly-l-lysine and poly-l-ornithine, has been explored. We first aimed to establish and characterize our parameters through a set of parametric tests. Variations in polymer coating, change in pH, and changes in loading ratio have previously been shown to effect release using model compounds. Here we test specific changes in these parameters to show effects on the release of αCT1. Additionally, the microcapsules were attached to several biomaterials and surgical implants by ultraviolet cross-linking to study the effectiveness of attachment and delivery. Analysis and measurements using phase contrast microscopy, scanning electron microscopy, and atomic force microscopy were used to characterize changes in microcapsule morphology.


Asunto(s)
Alginatos , Biomimética , Cápsulas , Preparaciones de Acción Retardada , Portadores de Fármacos , Péptidos/farmacocinética , Ácido Glucurónico , Ácidos Hexurónicos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía de Contraste de Fase , Peso Molecular , Péptidos/química
8.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38132651

RESUMEN

The transforming growth factor beta (TGFß) and Hippo signaling pathways are evolutionarily conserved pathways that play a critical role in cardiac fibroblasts during embryonic development, tissue repair, and fibrosis. TGFß signaling and Hippo signaling are also important for cardiac cushion remodeling and septation during embryonic development. Loss of TGFß2 in mice causes cardiac cushion remodeling defects resulting in congenital heart disease. In this study, we used in vitro molecular and pharmacologic approaches in the cushion mesenchymal cell line (tsA58-AVM) and investigated if the Hippo pathway acts as a mediator of TGFß2 signaling. Immunofluorescence staining showed that TGFß2 induced nuclear translocation of activated SMAD3 in the cushion mesenchymal cells. In addition, the results indicate increased nuclear localization of Yes-associated protein 1 (YAP1) following a similar treatment of TGFß2. In collagen lattice formation assays, the TGFß2 treatment of cushion cells resulted in an enhanced collagen contraction compared to the untreated cushion cells. Interestingly, verteporfin, a YAP1 inhibitor, significantly blocked the ability of cushion cells to contract collagen gel in the absence or presence of exogenously added TGFß2. To confirm the molecular mechanisms of the verteporfin-induced inhibition of TGFß2-dependent extracellular matrix (ECM) reorganization, we performed a gene expression analysis of key mesenchymal genes involved in ECM remodeling in heart development and disease. Our results confirm that verteporfin significantly decreased the expression of α-smooth muscle actin (Acta2), collagen 1a1 (Col1a1), Ccn1 (i.e., Cyr61), and Ccn2 (i.e., Ctgf). Western blot analysis indicated that verteporfin treatment significantly blocked the TGFß2-induced activation of SMAD2/3 in cushion mesenchymal cells. Collectively, these results indicate that TGFß2 regulation of cushion mesenchymal cell behavior and ECM remodeling is mediated by YAP1. Thus, the TGFß2 and Hippo pathway integration represents an important step in understanding the etiology of congenital heart disease.

9.
Microsc Microanal ; 18(1): 99-106, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22214557

RESUMEN

A novel self-organizing behavior of cellularized gels composed of collagen type 1 that may have utility for tissue engineering is described. Depending on the starting geometry of the tissue culture well, toroidal rings of cells or hollow spheroids were prompted to form autonomously when cells were seeded onto the top of gels and the gels released from attachment to the culture well 12 to 24 h after seeding. Cells within toroids assumed distinct patterns of alignment not seen in control gels in which cells had been mixed in. In control gels, cells formed complex three-dimensional arrangements and assumed relatively higher levels of heterogeneity in expression of the fibronectin splice variant ED-A--a marker of epithelial mesenchymal transformation. The tissue-like constructs resulting from this novel self-organizing behavior may have uses in wound healing and regenerative medicine, as well as building blocks for the iterative assembly of synthetic biological structures.


Asunto(s)
Colágeno/metabolismo , Hidrogeles , Ingeniería de Tejidos/métodos , Animales , Humanos , Conejos , Ratas , Medicina Regenerativa/métodos
10.
Front Physiol ; 13: 826122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222088

RESUMEN

Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.

11.
Microsc Microanal ; 17(1): 91-100, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205426

RESUMEN

Extracellular matrix (ECM) plays essential signaling and structural roles required for the proper function of cardiac valves. Cardiac valves initially form as jelly-like cushions, which must adapt to withstand the increased circulation hemodynamics associated with fetal development and birth. This increased biomechanical stability of the developing valves is largely imparted by ECM proteins, which form a highly organized fibrous meshwork. Since heart valve defects contribute to most congenital heart diseases, understanding valve development will provide insight into the pathogenesis of various congenital valve anomalies. Thus, the goal of this study is to describe the spatiotemporal deposition of fibrous ECM proteins during cardiac valve development. Chick embryonic and fetal atrioventricular and semilunar valves were examined by light, confocal, and transmission electron microscopy (TEM). Our data demonstrate that fibrous ECM proteins are deposited when the leaflets are adopting an elongated and compacted phenotype. A general pattern of increased fibrotic ECM deposition was detected in valve tissues. Also, each ECM protein examined displayed a unique pattern of organization, suggesting that regulation of fibrous protein deposition is complex and likely involves both genetic and mechanical factors. In addition, the TEM study revealed the presence of membrane protrusions from valvular endocardium, indicating a potential mechanism for mechanical force transduction.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Animales , Embrión de Pollo , Pollos/anatomía & histología , Pollos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Válvulas Cardíacas/anatomía & histología , Válvulas Cardíacas/química , Microscopía Confocal , Microscopía Electrónica de Transmisión
12.
J Cardiovasc Dev Dis ; 8(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34436240

RESUMEN

Collagen fibers are essential structural components of mitral valve leaflets, their tension apparatus (chordae tendineae), and the associated papillary muscles. Excess or lack of collagen fibers in the extracellular matrix (ECM) in any of these structures can adversely affect mitral valve function. The organization of collagen fibers provides a sophisticated framework that allows for unidirectional blood flow during the precise opening and closing of this vital heart valve. Although numerous ECM molecules are essential for the differentiation, growth, and homeostasis of the mitral valve (e.g., elastic fibers, glycoproteins, and glycans), collagen fibers are key to mitral valve integrity. Besides the inert structural components of the tissues, collagen fibers are dynamic structures that drive outside-to-inside cell signaling, which informs valvular interstitial cells (VICs) present within the tissue environment. Diversity of collagen family members and the closely related collagen-like triple helix-containing proteins found in the mitral valve, will be discussed in addition to how defects in these proteins may lead to valve disease.

13.
Biochem Biophys Res Commun ; 391(1): 852-6, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19945429

RESUMEN

Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFalpha)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFalpha-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFalpha hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.


Asunto(s)
Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Biosíntesis de Proteínas , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina Tiolesterasa/genética , Vasculitis/enzimología
14.
Front Pharmacol ; 11: 602952, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33603665

RESUMEN

Background: α-CGRP (alpha-calcitonin gene related peptide) is a cardioprotective neuropeptide. Our recent study demonstrated that the administration of native α-CGRP, using osmotic mini-pumps, protected against transverse aortic constriction (TAC) pressure-induced heart failure in mice. However, the short half-life of peptides and the non-applicability of osmotic pumps in humans limits the use of α-CGRP as a therapeutic agent for heart failure (HF). Here, we sought to comprehensively study a novel α-CGRP delivery system using alginate microcapsules to determine its bioavailability in vivo and to test for cardioprotective effects in HF mice. Methods: Native α-CGRP filled alginate microcapsules (200 µm diameter) were prepared using an electrospray method. The prepared alginate-α-CGRP microcapsules were incubated with rat cardiac H9c2 cells, mouse cardiac HL-1 cells, and human umbilical vein endothelial cells (HUVECs), and the cytotoxicity of the alginate-α-CGRP microcapsules was measured by a trypan-blue cell viability assay and a calcium dye fluorescent based assay. The efficacy of the alginate-α-CGRP microcapsules was tested in a TAC-pressure overload mouse model of heart failure. Male C57BL6 mice were divided into four groups: sham, sham-alginate-α-CGRP, TAC-only, and TAC-alginate-α-CGRP, and the TAC procedure was performed in the TAC-only and TAC-alginate-α-CGRP groups of mice to induce pressure-overload heart failure. After 2 or 15 days post-TAC, alginate-α-CGRP microcapsules (containing an α-CGRP dose of 6 mg/kg/mouse) were administered subcutaneously on alternate days, for 28 days, and echocardiography was performed weekly. After 28 days of peptide delivery, the mice were sacrificed and their hearts were collected for histological and biochemical analyses. Results: Our in vitro cell culture assays showed that alginate-α-CGRP microcapsules did not affect the viability of the cell lines tested. The alginate-α-CGRP microcapsules released their peptides for an extended period of time. Our echocardiography, biochemical, and histology data from HF mice demonstrated that the administration of alginate-α-CGRP microcapsules significantly improved all cardiac parameters examined in TAC-mice. When compared to sham mice, TAC significantly decreased cardiac functions (as determined by fraction shortening and ejection fraction) and markedly increased heart and lung weight, left ventricle (LV) cardiac cell size, cardiac apoptosis, and oxidative stress. In contrast, the administration of alginate-α-CGRP microcapsules significantly attenuated the increased heart and lung weight, LV cardiac cell size, apoptosis, and oxidative stress in TAC mice. Conclusion: Our results demonstrate that the encapsulation of α-CGRP in an alginate polymer is an effective strategy to improve peptide bioavailability in plasma and increase the duration of the therapeutic effect of the peptide throughout the treatment period. Furthermore, alginate mediates α-CGRP delivery, either prior to the onset or after the initiation of the symptom progression of pressure-overload, improves cardiac function, and protects hearts against pressure-induced HF.

15.
Dev Biol ; 316(2): 200-13, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18313657

RESUMEN

Cardiac valve leaflets develop from rudimentary structures termed endocardial cushions. These pre-valve tissues arise from a complex interplay of signals between the myocardium and endocardium whereby secreted cues induce the endothelial cells to transform into migratory mesenchyme through an endothelial to mesenchymal transformation (EMT). Even though much is currently known regarding the initial EMT process, the mechanisms by which these undifferentiated cushion mesenchymal tissues are remodeled "post-EMT" into mature fibrous valve leaflets remains one of the major, unsolved questions in heart development. Expression analyses, presented in this report, demonstrate that periostin, a component of the extracellular matrix, is predominantly expressed in post-EMT valve tissues and their supporting apparatus from embryonic to adult life. Analyses of periostin gene targeted mice demonstrate that it is within these regions that significant defects are observed. Periostin null mice exhibit atrial septal defects, structural abnormalities of the AV valves and their supporting tensile apparatus, and aberrant differentiation of AV cushion mesenchyme. Rescue experiments further demonstrate that periostin functions as a hierarchical molecular switch that can promote the differentiation of mesenchymal cells into a fibroblastic lineage while repressing their transformation into other mesodermal cell lineages (e.g. myocytes). This is the first report of an extracellular matrix protein directly regulating post-EMT AV valve differentiation, a process foundational and indispensable for the morphogenesis of a cushion into a leaflet.


Asunto(s)
Nodo Atrioventricular/embriología , Moléculas de Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica , Válvulas Cardíacas/embriología , Corazón/embriología , Corazón/fisiología , Animales , Nodo Atrioventricular/ultraestructura , Moléculas de Adhesión Celular/deficiencia , Desarrollo Embrionario , Válvulas Cardíacas/ultraestructura , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica
16.
Front Physiol ; 10: 821, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312143

RESUMEN

α-Calcitonin gene-related peptide (α-CGRP) is a regulatory neuropeptide of 37 amino acids. It is widely distributed in the central and peripheral nervous system, predominantly in cell bodies of the dorsal root ganglion (DRG). It is the most potent vasodilator known to date and has inotropic and chronotropic effects. Using pharmacological and genetic approaches, our laboratory and other research groups established the protective role of α-CGRP in various cardiovascular diseases such as heart failure, experimental hypertension, myocardial infarction, and myocardial ischemia/reperfusion injury (I/R injury). α-CGRP acts as a depressor to attenuate the rise in blood pressure in three different models of experimental hypertension: (1) DOC-salt, (2) subtotal nephrectomy-salt, and (3) L-NAME-induced hypertension during pregnancy. Subcutaneous administration of α-CGRP lowers the blood pressure in hypertensive and normotensive humans and rodents. Recent studies also demonstrated that an α-CGRP analog, acylated α-CGRP, with extended half-life (~7 h) reduces blood pressure in Ang-II-induced hypertensive mouse, and protects against abdominal aortic constriction (AAC)-induced heart failure. Together, these studies suggest that α-CGRP, native or a modified form, may be a potential therapeutic agent to treat patients suffering from cardiac diseases.

17.
Physiol Rep ; 7(21): e14269, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724338

RESUMEN

Alpha-calcitonin gene-related peptide (α-CGRP) is a 37-amino acid neuropeptide that plays an important protective role in modulating cardiovascular diseases. Deletion of the α-CGRP gene increases the vulnerability of the heart to pressure-induced heart failure and the administration of a modified α-CGRP agonist decreases this vulnerability. Systemic administration of α-CGRP decreases blood pressure in normotensive and hypertensive animals and humans. Here we examined the protective effect of long-term administration of native α-CGRP against pressure-overload heart failure and the likely mechanism(s) of its action. Transverse aortic constriction (TAC) was performed to induce pressure-overload heart failure in mice. We found that TAC significantly decreased left ventricular (LV) fractional shortening, ejection fraction, and α-CGRP content, and increased hypertrophy, dilation, and fibrosis compared to sham mice. Administration of α-CGRP-filled mini-osmotic pumps (4 mg/kg bwt/day) in TAC mice preserved cardiac function and LV α-CGRP levels, and reduced LV hypertrophy, dilation, and fibrosis to levels comparable to sham mice. Additionally, TAC pressure-overload significantly increased LV apoptosis and oxidative stress compared to the sham mice but these increases were prevented by α-CGRP administration. α-CGRP administration in TAC animals decreased LV AMPK phosphorylation levels and the expression of sirt1, both of which are regulatory markers of oxidative stress and energy metabolism. These results demonstrate that native α-CGRP is protective against pressure-overload induced heart failure. The mechanism of this cardio-protection is likely through the prevention of apoptosis and oxidative stress, possibly mediated by sirt1 and AMPK. Thus, α-CGRP is a potential therapeutic agent in preventing the progression to heart failure, and the cardio-protective action of α-CGRP is likely the result of a direct cellular effect; however, a partial vasodilatory blood pressure-dependent mechanism of α-CGRP cannot be excluded.


Asunto(s)
Apoptosis/fisiología , Péptido Relacionado con Gen de Calcitonina/fisiología , Insuficiencia Cardíaca/fisiopatología , Corazón/fisiología , Estrés Oxidativo/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Apoptosis/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/administración & dosificación , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/metabolismo , Sirtuina 1/metabolismo
18.
Biomaterials ; 29(30): 4074-81, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18649940

RESUMEN

To investigate the role that the micro/nano-environment plays on the differentiation pathway of bone marrow stromal cells (BMSCs) into osteoblasts, we employed a 2D substrate coated with turnip yellow mosaic virus (TYMV) particles. TYMV is a non-enveloped icosahedral plant virus which has an average diameter 28 nm and the protein cage structure consists of 180 identical subunits. The temporal effect of TYMV coated substrate on the adhesion and differentiation capacity of the BMSCs was monitored for selected time periods of 7, 14 and 21 days. We examined the gene expression profile of BMSCs cultured in primary media (undifferentiated cells) and cells induced to osteoblast lineage by real time PCR analysis. To further corroborate our findings, we investigated the expression of osteogenic markers using immunohistochemistry and cytochemical staining. As expected, the genes involved in the process of osteogenic differentiation were activated more during the growth of cells under osteogenic media. In addition, we found that the BMSCs induced to undergo osteogenic differentiation on TYMV coated substrates formed fully mineralized nodules comprising of osteoblast-like cells around day 14. Comparing the gene expression pattern of BMSCs induced to osteogenic differentiation under standard culture conditions with the cells induced on TYMV substrates, we found significant differences in the temporal expression and level of expression of several key genes. Our findings indicate that TYMV, as a biogenic nanoparticle, can be employed as a model to modulate the nano-environment of the substrates in order to gain an insight into the role that the micro/nano-environment has in regulating adhesion, growth and differentiation of BMSCs towards osteogenic lineage, which will be vital for designing compatible biomaterials for tissue engineering purposes.


Asunto(s)
Caulimovirus/metabolismo , Materiales Biocompatibles Revestidos/farmacología , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Virión/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Ratas , Ratas Wistar
19.
Biomaterials ; 29(14): 2203-16, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18289664

RESUMEN

It is well established that the process of neovascularization or neoangiogenesis is coupled to the development and maturation of bone. Bone marrow stromal cells (BMSCs) or mesenchymal stem cells (MSCs) comprise a heterogeneous population of cells that can be differentiated in vitro into both mesenchymal and non-mesenchymal cell lineages. When both rat BMSCs and quail proepicardia (PEs) were seeded onto a three-dimensional (3-D) tubular scaffold engineered from aligned collagen type I strands and co-cultured in osteogenic media, the maturation and co-differentiation into osteoblastic and vascular cell lineages were observed. In addition, these cells produced abundant mineralized extracellular matrix materials and vessel-like structures. BMSCs were seeded at a density of 2 x 10(6)cells/15 mm tube and cultured in basal media for 3 days. Subsequently, on day 3, PEs were seeded onto the same tubes and the co-culture was continued for another 3, 6 or 9 days either in basal or in osteogenic media. Differentiated cells were subjected to immunohistochemical, cytochemical and biochemical analyses. Phenotypic induction was analyzed at mRNA level by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Immunolocalization of key osteogenic and vasculogenic lineage specific markers were examined using confocal scanning laser microscopy. In osteogenic tube cultures, both early and late osteogenic markers were observed and were reminiscent of in vivo expression pattern. Alkaline phosphatase activity and calcium content significantly increased over the observed period of time in osteogenic medium. Abundant interlacing fascicles of QCPN, QH1, isolectin and alpha-smooth muscle actin (alpha-SMA) positive cells were observed in these tube cultures. These cells formed extensive arborizations of nascent capillary-like structures and were seen amidst the developing osteoblasts in osteogenic cultures. The 3-D culture system not only generated de novo vessel-like structures but also augmented the maturation and differentiation of BMSCs into osteoblasts. Thus, this novel co-culture system provides a useful in vitro model to investigate the functional role and effects of neovascularization in the proliferation, differentiation and maturation of BMSC derived osteoblasts.


Asunto(s)
Células de la Médula Ósea/citología , Osteogénesis/fisiología , Pericardio/citología , Células del Estroma/citología , Ingeniería de Tejidos/métodos , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Animales , Calcio/análisis , Calcio/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno Tipo I/química , Inmunohistoquímica , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Codorniz , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Células del Estroma/metabolismo , Factores de Tiempo
20.
Tissue Eng Part A ; 24(1-2): 157-185, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28457188

RESUMEN

The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible and quintessential in vitro 3D model of cardiomyogenesis and a functioning prevascularized 3D cardiac graft that can be utilized for personalized medicine.


Asunto(s)
Células Madre Mesenquimatosas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA