Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 311(3): e231598, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916502

RESUMEN

Background Photon-counting CT (PCCT) represents a recent advancement in CT, offering improved spatial resolution and spectral separability. By using multiple adjustable energy bins, PCCT enables K-edge imaging, allowing mixed contrast agent distinction. Deep-silicon is a new type of photon-counting detector with different characteristics compared with cadmium photon-counting detectors. Purpose To evaluate the performance of a prototype deep-Si PCCT scanner and compare it with that of a state-of-the-art dual-energy energy-integrating detector (EID) scanner in imaging coronary artery plaques enhanced with iodine and K-edge contrast agents. Materials and Methods A series of 10 three-dimensional-printed inserts (diameter, 3.5 mm) was prepared, and materials mimicking soft and calcified plaques were added to simulate stenosed coronary arteries. Inserts filled with an iodine- or gadolinium-based contrast agent (GBCA) were scanned. Virtual monoenergetic images (VMIs) and iodine maps were generated using two- and eight-energy bin data from EID CT and PCCT, respectively. Gadolinium maps were calculated for PCCT. The CT numbers of VMIs and iodine maps were compared. Spatial resolution and blooming artifacts were compared on the 70-keV VMIs in plaque-free and calcified coronary arteries. Results No evidence of a significant difference in the CT number of 70-keV images was found except in inserts containing GBCAs. In the absence of a GBCA, excellent (r > 0.99) agreement for iodine was found. PCCT could quantify the GBCA within 0.2 mg Gd/mL ± 0.8 accuracy of the ground truth, whereas EID CT failed to detect the GBCA. Lumen measurements were more accurate for PCCT than for EID CT, with mean errors of 167 versus 442 µm (P < .001) compared with the 3.5-mm ground truth. Conclusion Deep-Si PCCT demonstrated good accuracy in iodine quantification and could accurately decompose mixtures of two contrast agents. Its improved spatial resolution resulted in sharper images with blooming artifacts reduced by 50% compared with a state-of-the-art dual-energy EID CT scanner. © RSNA, 2024.


Asunto(s)
Medios de Contraste , Fantasmas de Imagen , Fotones , Humanos , Tomografía Computarizada por Rayos X/métodos , Vasos Coronarios/diagnóstico por imagen , Silicio , Diseño de Equipo
2.
Radiology ; 309(1): e222432, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37787672

RESUMEN

CT systems equipped with photon-counting detectors (PCDs), referred to as photon-counting CT (PCCT), are beginning to change imaging in several subspecialties, such as cardiac, vascular, thoracic, and musculoskeletal radiology. Evidence has been building in the literature underpinning the many advantages of PCCT for different clinical applications. These benefits derive from the distinct features of PCDs, which are made of semiconductor materials capable of converting photons directly into electric signal. PCCT advancements include, among the most important, improved spatial resolution, noise reduction, and spectral properties. PCCT spatial resolution on the order of 0.25 mm allows for the improved visualization of small structures (eg, small vessels, arterial walls, distal bronchi, and bone trabeculations) and their pathologies, as well as the identification of previously undetectable anomalies. In addition, blooming artifacts from calcifications, stents, and other dense structures are reduced. The benefits of the spectral capabilities of PCCT are broad and include reducing radiation and contrast material dose for patients. In addition, multiple types of information can be extracted from a single data set (ie, multiparametric imaging), including quantitative data often regarded as surrogates of functional information (eg, lung perfusion). PCCT also allows for a novel type of CT imaging, K-edge imaging. This technique, combined with new contrast materials specifically designed for this modality, opens the door to new applications for imaging in the future.


Asunto(s)
Arterias , Tomografía Computarizada por Rayos X , Humanos , Artefactos , Bronquios , Medios de Contraste
3.
Radiology ; 298(1): 3-17, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33201793

RESUMEN

Impending major hardware advances in cardiac CT include three areas: ultra-high-resolution (UHR) CT, photon-counting CT, and phase-contrast CT. Cardiac CT is a particularly demanding CT application that requires a high degree of temporal resolution, spatial resolution, and soft-tissue contrast in a moving structure. In this review, cardiac CT is used to highlight the strengths of these technical advances. UHR CT improves visualization of calcified and stented vessels but may result in increased noise and radiation exposure. Photon-counting CT uses multiple photon energies to reduce artifacts, improve contrast resolution, and perform material decomposition. Finally, phase-contrast CT uses x-ray refraction properties to improve spatial and soft-tissue contrast. This review describes these hardware advances in CT and their relevance to cardiovascular imaging.


Asunto(s)
Cardiopatías/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Corazón/diagnóstico por imagen , Humanos , Tomografía Computarizada por Rayos X/tendencias
6.
Radiology ; 289(2): 293-312, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30179101

RESUMEN

Photon-counting CT is an emerging technology with the potential to dramatically change clinical CT. Photon-counting CT uses new energy-resolving x-ray detectors, with mechanisms that differ substantially from those of conventional energy-integrating detectors. Photon-counting CT detectors count the number of incoming photons and measure photon energy. This technique results in higher contrast-to-noise ratio, improved spatial resolution, and optimized spectral imaging. Photon-counting CT can reduce radiation exposure, reconstruct images at a higher resolution, correct beam-hardening artifacts, optimize the use of contrast agents, and create opportunities for quantitative imaging relative to current CT technology. In this review, the authors will explain the technical principles of photon-counting CT in nonmathematical terms for radiologists and clinicians. Following a general overview of the current status of photon-counting CT, they will explain potential clinical applications of this technology.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Humanos , Fotones
7.
Radiology ; 285(3): 980-989, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28753389

RESUMEN

Purpose To investigate whether photon-counting detector (PCD) technology can improve dose-reduced chest computed tomography (CT) image quality compared with that attained with conventional energy-integrating detector (EID) technology in vivo. Materials and Methods This was a HIPAA-compliant institutional review board-approved study, with informed consent from patients. Dose-reduced spiral unenhanced lung EID and PCD CT examinations were performed in 30 asymptomatic volunteers in accordance with manufacturer-recommended guidelines for CT lung cancer screening (120-kVp tube voltage, 20-mAs reference tube current-time product for both detectors). Quantitative analysis of images included measurement of mean attenuation, noise power spectrum (NPS), and lung nodule contrast-to-noise ratio (CNR). Images were qualitatively analyzed by three radiologists blinded to detector type. Reproducibility was assessed with the intraclass correlation coefficient (ICC). McNemar, paired t, and Wilcoxon signed-rank tests were used to compare image quality. Results Thirty study subjects were evaluated (mean age, 55.0 years ± 8.7 [standard deviation]; 14 men). Of these patients, 10 had a normal body mass index (BMI) (BMI range, 18.5-24.9 kg/m2; group 1), 10 were overweight (BMI range, 25.0-29.9 kg/m2; group 2), and 10 were obese (BMI ≥30.0 kg/m2, group 3). PCD diagnostic quality was higher than EID diagnostic quality (P = .016, P = .016, and P = .013 for readers 1, 2, and 3, respectively), with significantly better NPS and image quality scores for lung, soft tissue, and bone and with fewer beam-hardening artifacts (all P < .001). Image noise was significantly lower for PCD images in all BMI groups (P < .001 for groups 1 and 3, P < .01 for group 2), with higher CNR for lung nodule detection (12.1 ± 1.7 vs 10.0 ± 1.8, P < .001). Inter- and intrareader reproducibility were good (all ICC > 0.800). Conclusion Initial human experience with dose-reduced PCD chest CT demonstrated lower image noise compared with conventional EID CT, with better diagnostic quality and lung nodule CNR. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Fotometría/instrumentación , Exposición a la Radiación/prevención & control , Protección Radiológica/instrumentación , Radiografía Torácica/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Anciano , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos , Persona de Mediana Edad , Fotometría/métodos , Proyectos Piloto , Dosis de Radiación , Protección Radiológica/métodos , Radiografía Torácica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
9.
Radiology ; 279(1): 239-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26840654

RESUMEN

PURPOSE: To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID). MATERIALS AND METHODS: The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven men; mean age, 58.2 years ± 9.8 [standard deviation]) were prospectively enrolled between September 2 and November 13, 2015. Radiation dose-matched delayed contrast agent-enhanced spiral and axial abdominal EID and PCD scans were acquired. Spiral images were scored for image quality (Wilcoxon signed-rank test) in five regions of interest by three radiologists blinded to the detector system, and the axial scans were used to assess Hounsfield unit accuracy in seven regions of interest (paired t test). Intraclass correlation coefficient (ICC) was used to assess reproducibility. PCD images were also used to calculate iodine concentration maps. Spatial resolution, noise-power spectrum, and Hounsfield unit accuracy of the systems were estimated by using a CT phantom. RESULTS: In both systems, scores were similar for image quality (median score, 4; P = .19), noise (median score, 3; P = .30), and artifact (median score, 1; P = .17), with good interrater agreement (image quality, noise, and artifact ICC: 0.84, 0.88, and 0.74, respectively). Hounsfield unit values, spatial resolution, and noise-power spectrum were also similar with the exception of mean Hounsfield unit value in the spinal canal, which was lower in the PCD than the EID images because of beam hardening (20 HU vs 36.5 HU; P < .001). Contrast-to-noise ratio of enhanced kidney tissue was improved with PCD iodine mapping compared with EID (5.2 ± 1.3 vs 4.0 ± 1.3; P < .001). CONCLUSION: The performance of PCD showed no statistically significant difference compared with EID when the abdomen was evaluated in a conventional scan mode. PCD provides spectral information, which may be used for material decomposition.


Asunto(s)
Medios de Contraste , Radiografía Abdominal/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fotones , Estudios Prospectivos , Interpretación de Imagen Radiográfica Asistida por Computador , Semiconductores , Sensibilidad y Especificidad
10.
Radiology ; 281(3): 737-748, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27636027

RESUMEN

Purpose To determine reader and computed tomography (CT) scan variability for measurement of coronary plaque volume. Materials and Methods This HIPAA-compliant study followed Standards for Reporting of Diagnostic Accuracy guidelines. Baseline coronary CT angiography was performed in 40 prospectively enrolled subjects (mean age, 67 years ± 6 [standard deviation]) with asymptomatic hyperlipidemia by using a 320-detector row scanner (Aquilion One Vision; Toshiba, Otawara, Japan). Twenty of these subjects underwent coronary CT angiography repeated on a separate day with the same CT scanner (Toshiba, group 1); 20 subjects underwent repeat CT performed with a different CT scanner (Somatom Force; Siemens, Forchheim, Germany [group 2]). Intraclass correlation coefficients (ICCs) and Bland-Altman analysis were used to assess interreader, intrareader, and interstudy reproducibility. Results Baseline and repeat coronary CT angiography scans were acquired within 19 days ± 6. Interreader and intrareader agreement rates were high for total, calcified, and noncalcified plaques for both CT scanners (all ICCs ≥ 0.96) without bias. Scanner variability was ±18.4% (coefficient of variation) with same-vendor follow-up. However, scanner variability increased to ±29.9% with different-vendor follow-up. The sample size to detect a 5% change in noncalcified plaque volume with 90% power and an α error of .05 was 286 subjects for same-CT scanner follow-up and 753 subjects with different-vendor follow-up. Conclusion State-of-the-art coronary CT angiography with same-vendor follow-up has good scan-rescan reproducibility, suggesting a role of coronary CT angiography in monitoring coronary artery plaque response to therapy. Differences between coronary CT angiography vendors resulted in lower scan-rescan reproducibility. © RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada/normas , Enfermedad de la Arteria Coronaria/patología , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Placa Aterosclerótica/patología , Tomógrafos Computarizados por Rayos X/normas
11.
Eur Radiol Exp ; 8(1): 4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172486

RESUMEN

Recent advancements in diagnostic CT detector technology have made it possible to resolve anatomical features smaller than 20 LP/cm, referred to as ultra-high-resolution (UHR) CT. Subtle biological motions that did not affect standard-resolution (SR) CT may not be neglected in UHR. This study aimed to quantify the cardiac-induced motion of the pancreas and simulate its impact on the image quality of UHR-CT. We measured the displacement of the head of the pancreas in three healthy volunteers using Displacement Encoding with Stimulated Echoes (DENSE) MRI. The results were used to simulate SR- and UHR-CT acquisitions affected by pancreatic motion.We found pancreatic displacement in the 0.24-1.59 mm range during one cardiac cycle across the subjects. The greatest displacement was observed in the anterior-posterior direction. The time to peak displacement varied across subjects. Both SR and UHR images showed reduced image quality, as measured by radial modulation transfer function, due to cardiac-induced motion, but the motion artifacts caused more severe degradation in UHR acquisitions. Our investigation of cardiac-induced pancreatic displacement reveals its potential to degrade both standard and UHR-CT scans. To fully utilize the improvement in spatial resolution offered by UHR-CT, the effects of cardiac-induced motion in the abdomen need to be understood and corrected.Relevance statement Advancements in CT detector technology have enhanced CT scanner spatial resolution to approximately 100 µm. Consequently, previously ignored biological motions such as the cardiac-induced motion of the pancreas now demand attention to fully utilize this improved resolution.


Asunto(s)
Cavidad Abdominal , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Movimiento (Física) , Páncreas/diagnóstico por imagen
12.
ArXiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351941

RESUMEN

Contained within this volume are the scholarly contributions presented in both oral and poster formats at Fully3D 2023: The 17th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. This conference convened from July 16-21, 2023, at Stony Brook University in New York. For ease of reference, all papers are organized alphabetically according to the last names of the primary authors. Our heartfelt appreciation goes out to all participants who took the time to submit, present, and revise their work for inclusion in these proceedings. Collectively, we would also like to express our profound gratitude to our generous sponsors, detailed in subsequent pages, who have played an instrumental role in offering awards and facilitating the various conference activities. Additionally, our thanks extend to the diligent reporter who collated invaluable feedback from attendees, which can be found in the pages that follow. September 7, 2023 Fully3D 2023 Co-Chairs: Jerome Liang, Paul Vaska, and Chuan Huang.

13.
J Cardiovasc Comput Tomogr ; 17(5): 341-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37567802

RESUMEN

BACKGROUND: Recent improvements in CT detector technology have led to smaller detector pixels resolving frequencies beyond 20 lp/cm and enabled ultra-high-resolution CT. Silicon-based photon-counting detector (PCD) CT is one such technology that promises improved spatial and spectral resolution. However, when the detector pixel sizes are reduced, the impact of cardiac motion on CT images becomes more pronounced. Here, we investigated the effects cardiac motion on the image quality of a clinical prototype Si-PCD scanner in a dynamic heart phantom. METHODS: A series of 3D-printed vessels were created to simulate coronary arteries with diameter in the 1-3.5 â€‹mm range. Four coronary stents were set inside the d â€‹= â€‹3.5 â€‹mm vessels and all vessels were filled with contrast agents and were placed inside a dynamic cardiac phantom. The phantom was scanned in motion (60 bpm) and at rest on a prototype clinical Si-PCD CT scanner in 8-bin spectral UHR mode. Virtual monoenergetic images (VMI) were generated at 70 â€‹keV and CT number accuracy and effective spatial resolution (blooming) of rest and motion VMIs were compared. RESULTS: Linear regression analysis of CT numbers showed excellent agreement (r â€‹> â€‹0.99) between rest and motion. We did not observe a significant difference (p â€‹> â€‹0.48) in estimating free lumen diameters. Differences in in-stent lumen diameter and stent strut thickness were non-significant with maximum mean difference of approximately 70 â€‹µm. CONCLUSION: We found no significant degradation in CT number accuracy or spatial resolution due to cardiac motion. The results demonstrate the potential of spectral UHR coronary CT angiography enabled by Si-PCD.


Asunto(s)
Angiografía por Tomografía Computarizada , Silicio , Humanos , Angiografía por Tomografía Computarizada/métodos , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X/métodos , Angiografía Coronaria/métodos , Fantasmas de Imagen
14.
J Cardiovasc Comput Tomogr ; 15(3): 218-225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33358186

RESUMEN

Photon-counting computed tomography (PCCT) is an emerging technology promising to substantially improve cardiovascular imaging. Recent engineering and manufacturing advances by several vendors are expected to imminently launch this new technology into clinical reality. Photon-counting detectors (PCDs) have multiple potential advantages over conventional energy integrating detectors (EIDs) such as the absence of electronic noise, multi-energy capability, and increased spatial resolution. These developments will have different timescales for implementation and will affect different clinical scopes. We describe the technical aspects of PCCT, explain the current developments, and finally discuss potential advantages of PCCT in cardiovascular imaging.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Fotones , Tomografía Computarizada por Rayos X , Humanos , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/instrumentación
15.
Int J Cardiovasc Imaging ; 35(4): 733-739, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30635819

RESUMEN

To evaluate the performance of photon-counting detector (PCD) computed tomography (CT) for coronary artery calcium (CAC) score imaging at standard and reduced radiation doses compared to conventional energy-integrating detector (EID) CT. A dedicated cardiac CT phantom, ten ex vivo human hearts, and ten asymptomatic volunteers underwent matched EID and PCD CT scans at different dose settings without ECG gating. CAC score, contrast, and contrast-to-noise ratio (CNR) were calculated in the cardiac CT phantom. CAC score accuracy and reproducibility was assessed in the ex vivo hearts. Standard radiation dose (120 kVp, reference mAs = 80) in vivo CAC scans were compared against dose-reduced CAC scans (75% dose reduction; reference mAs = 20) for image quality and CAC score reproducibility. Interstudy agreement was assessed by using intraclass correlation (ICC), linear regression, and Bland-Altman analysis with 95% confidence interval limits of agreement (LOA). Calcium-soft tissue contrast and CNR were significantly higher for the PCD CAC scans in the cardiac CT phantom (all P < 0.01). Ex vivo hearts: CAC score reproducibility was significantly higher for the PCD scans at the lowest dose setting (50 mAs) (P = 0.002); score accuracy was similar for both detector systems at all dose settings. In vivo scans: the agreement between standard dose and low dose CAC score was significantly better for the PCD than for the EID with narrower LOA in Bland-Altman analysis, linear regression slopes closer to 1 (0.96 vs. 0.84), and higher ICC values (0.98 vs. 0.93, respectively). Phantom and in vivo human studies showed PCD may significantly improve CAC score image quality and/or reduce CAC score radiation dose while maintaining diagnostic image quality.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Fotones , Calcificación Vascular/diagnóstico por imagen , Anciano , Angiografía por Tomografía Computarizada/instrumentación , Angiografía Coronaria/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Estudios Prospectivos , Dosis de Radiación , Exposición a la Radiación/prevención & control , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
16.
Invest Radiol ; 53(6): 365-372, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29595753

RESUMEN

PURPOSE: The aim of this study was to assess the clinical feasibility, image quality, and radiation dose implications of 0.25-mm imaging mode in a cohort of humans, achieved by dividing the photon-counting detector (PCD) size in half compared with standard-resolution photon-counting computed tomography (CT) (0.5 mm). METHODS: In this technical feasibility study, a whole-body prototype PCD-CT scanner was studied in the 0.25 mm detector mode (measured at isocenter). A high-resolution PCD-CT protocol was first tested in phantom and canine studies in terms of image noise and spatial resolution. Then, 8 human subjects (mean age, 58 ± 8 years; 2 men) underwent axial PCD 0.25-mm scans of the brain, the thorax, and at the level of the upper left kidney. Filtered backprojection reconstruction was performed with a sharp kernel (B70) for standard-resolution and high-resolution data at 0.5-mm isotropic image voxel. High-resolution data, in addition, were reconstructed with an ultrasharp kernel (U70) at 0.25-mm isotropic voxels. RESULTS: Image reconstructions from the PCD 0.25-mm detector system led to an improvement in resolution from 9 to 18 line pairs/cm in a line pair phantom. Modulation transfer function improved from 9.5 to 15.8 line pairs/cm at 10% modulation transfer function. When fully exploiting this improvement, image noise increased by 75% compared with dose-matched 0.5-mm slice PCD standard-resolution acquisition. However, when comparing with standard-resolution data at same in-plane resolution and slice thickness, the PCD 0.25-mm detector mode showed 19% less image noise in phantom, animal, and human scans. CONCLUSION: High-resolution photon-counting CT in humans showed improved image quality in terms of spatial resolution and image noise compared with standard-resolution photon-counting.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Imagen de Cuerpo Entero/métodos , Animales , Perros , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Animales , Fantasmas de Imagen , Fotones , Dosis de Radiación
17.
Int J Cardiovasc Imaging ; 34(8): 1277-1286, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29536325

RESUMEN

Resting regional wall motion abnormality (RWMA) has significant prognostic value beyond the findings of computed tomography (CT) coronary angiography. Stretch quantification of endocardial engraved zones (SQUEEZ) has been proposed as a measure of regional cardiac function. The purpose of the work reported here was to determine the effect of lowering the radiation dose on the precision of automatic SQUEEZ assessments of RWMA. Chronic myocardial infarction was created by a 2-h occlusion of the left anterior descending coronary artery in 10 swine (heart rates 80-100, ejection fraction 25-57%). CT was performed 5-11 months post infarct using first-pass contrast enhanced segmented cardiac function scans on a 320-detector row scanner at 80 kVp/500 mA. Images were reconstructed at end diastole and end systole with both filtered back projection and using the "standard" adaptive iterative dose reduction (AIDR) algorithm. For each acquisition, 9 lower dose acquisitions were created. End systolic myocardial function maps were calculated using SQUEEZ for all noise levels and contrast-to-noise ratio (CNR) between the left ventricle blood and myocardium was calculated as a measure of image quality. For acquisitions with CNR > 4, SQUEEZ could be estimated with a precision of ± 0.04 (p < 0.001) or 5.7% of its dynamic range. The difference between SQUEEZ values calculated from AIDR and FBP images was not statistically significant. Regional wall motion abnormality can be quantified with good precision from low dose acquisitions, using SQUEEZ, as long as the blood-myocardium CNR stays above 4.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Infarto del Miocardio/diagnóstico por imagen , Disfunción Ventricular Izquierda/diagnóstico por imagen , Animales , Enfermedad Crónica , Angiografía Coronaria/métodos , Modelos Animales de Enfermedad , Endocardio/diagnóstico por imagen , Femenino , Aumento de la Imagen , Modelos Cardiovasculares , Infarto del Miocardio/complicaciones , Dosis de Radiación , Exposición a la Radiación/prevención & control , Interpretación de Imagen Radiográfica Asistida por Computador , Relación Señal-Ruido , Porcinos , Disfunción Ventricular Izquierda/etiología
18.
Abdom Radiol (NY) ; 43(10): 2743-2749, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29525880

RESUMEN

PURPOSE: To determine whether the type of VHL gene pathogenic variant influences the growth rate or CT enhancement values of renal lesions in VHL patients. MATERIALS AND METHODS: Thirty-two VHL patients (19 male) were selected from a prospectively maintained imaging database for patients that underwent surgical tumor resection between 2014 and 2016. One hundred and eleven VHL lesions were marked for resection and pathology analysis. Whole lesion volumetric segmentation was performed on nephrographic phase of the two most recent contrast-enhanced CT scans before surgery. Intensity distribution curves were obtained from segmentations. A linear mixed model, accounting for within-patient correlations, was used to compare the growth and enhancement differences between different germline pathogenic variant types. RESULTS: There was no significant difference for the lesions' total growth between different germline pathogenic variants (P value = 0.78). The median growth rate for all lesions was 1.7 cc/year (IQR 0.5, 3.9) with a baseline median size of 4.1 cm3 (IQR 1.7, 11.7). In complex lesions, the solid portion of the tumor demonstrated a higher growth rate (1.6 cc/year) than cystic portions (0.02 cc/year) which stayed relatively unchanged. Only one pathogenic variant (Splice donor) showed some levels of difference in its relative enhancement from other subtypes. CONCLUSION: The type of germline pathogenic variant on the VHL gene does not affect the growth rate or CT enhancement values of renal lesions in patients with VHL. The absolute growth rate of these tumors may be used in the scheduling of follow-up studies.


Asunto(s)
Neoplasias Renales/complicaciones , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/complicaciones , Enfermedad de von Hippel-Lindau/genética , Adulto , Anciano , Femenino , Células Germinativas , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos
19.
Med Image Anal ; 46: 215-228, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29627686

RESUMEN

Recent improvements in cardiac computed tomography (CCT) allow for whole-heart functional studies to be acquired at low radiation dose (<2mSv) and high-temporal resolution (<100ms) in a single heart beat. Although the extraction of regional functional information from these images is of great clinical interest, there is a paucity of research into the quantification of regional function from CCT, contrasting with the large body of work in echocardiography and cardiac MR. Here we present the Simultaneous Subdivision Surface Registration (SiSSR) method: a fast, semi-automated image analysis pipeline for quantifying regional function from contrast-enhanced CCT. For each of thirteen adult male canines, we construct an anatomical reference mesh representing the left ventricular (LV) endocardium, obviating the need for a template mesh to be manually sculpted and initialized. We treat this generated mesh as a Loop subdivision surface, and adapt a technique previously described in the context of 3-D echocardiography to register these surfaces to the endocardium efficiently across all cardiac frames simultaneously. Although previous work performs the registration at a single resolution, we observe that subdivision surfaces naturally suggest a multiresolution approach, leading to faster convergence and avoiding local minima. We additionally make two notable changes to the cost function of the optimization, explicitly encouraging plausible biological motion and high mesh quality. Finally, we calculate an accepted functional metric for CCT from the registered surfaces, and compare our results to an alternate state-of-the-art CCT method.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Animales , Medios de Contraste , Perros , Yopamidol
20.
Abdom Radiol (NY) ; 43(9): 2424-2430, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29520425

RESUMEN

PURPOSE: To determine whether objective volumetric whole-lesion apparent diffusion coefficient (ADC) distribution analysis improves upon the capabilities of conventional subjective small region-of-interest (ROI) ADC measurements for prediction of renal cell carcinoma (RCC) subtype. METHODS: This IRB-approved study retrospectively enrolled 55 patients (152 tumors). Diffusion-weighted imaging DWI was acquired at b values of 0, 250, and 800 s/mm2 on a 1.5T system (Aera, Siemens Healthcare). Whole-lesion measurements were performed by a research fellow and reviewed by a fellowship-trained radiologist. Mean, median, skewness, kurtosis, and every 5th percentile ADCs were determined from the whole-lesion histogram. Linear mixed models that accounted for within-subject correlation of lesions were used to compare ADCs among RCC subtypes. Receiver-operating characteristic (ROC) curve analysis with optimal cutoff points from the Youden index was used to test the ability of ADCs to differentiate clear cell RCC (ccRCC), papillary RCC (pRCC), and oncocytoma subtypes. RESULTS: Whole-lesion ADC values were significantly different between pRCC and ccRCC, and between pRCC and oncocytoma, demonstrating strong ability to differentiate subtypes across the quantiles (both P < 0.001). Best percentile ROC analysis demonstrated AUC values of 95.2 for ccRCC vs. pRCC; 67.6 for oncocytoma vs. ccRCC; and 95.8 for oncocytoma vs. pRCC. Best percentile ROC analysis further indicated model sensitivities/specificities of 84.5%/93.1% for ccRCC vs. pRCC; 100.0%/10.3% for oncocytoma vs. ccRCC; and 88.5%/93.1% for oncocytoma vs. pRCC. CONCLUSION: The objective methodology of whole-lesion volumetric ADC measurements maintains the sensitivity/specificity of conventional expert-based ROI analysis, provides information on lesion heterogeneity, and reduces observer bias.


Asunto(s)
Carcinoma Papilar/diagnóstico por imagen , Carcinoma de Células Renales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Renales/diagnóstico por imagen , Adulto , Anciano , Carcinoma Papilar/patología , Carcinoma de Células Renales/patología , Medios de Contraste , Diagnóstico Diferencial , Femenino , Humanos , Neoplasias Renales/patología , Masculino , Maryland , Persona de Mediana Edad , Compuestos Organometálicos , Estudios Retrospectivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA