RESUMEN
COVID-19 survivors often endorse persistent physical and neuropsychiatric problems following disease recovery, a phenomenon described as "long COVID." Research exploring long-COVID continues to evolve in large-scale studies but remains limited among smaller populations (e.g., veterans). We explored the relationship between persistent post-COVID-19 fatigue and cognition among a sample of 246 veterans who voluntarily enrolled in a COVID-19 Convalescence Programme and completed a mental health evaluation of post-illness mood (depression, anxiety, PTSD), cognition (subjective complaints, Modified Telephone Interview for Cognitive Status [TICS-M] performance), fatigue, pain, and sleep. In concert with our hypotheses, subjective cognitive complaints are not significantly correlated with TICS-M performance, but rather are strongly correlated with long-COVID fatigue. Although cognitive changes are common post-COVID complaints, these are likely better predicted by other factors, (e.g., fatigue, mood, pain, and sleep disruption). Furthermore, comorbid mood, sleep, and pain complaints appeared to mediate the relationship between subjective cognitive complaints and fatigue. Limitations to this study included use of retrospective chart review data, limited access to pre-disease data for comparison, and lack of healthy controls. Clinicians should consider the impact of modifiable conditions associated with cognitive and functional decline, as these conditions may be targets for interdisciplinary treatment in a long-COVID veteran population.
RESUMEN
The diagnostic gap for rare neurodegenerative diseases is still considerable, despite continuous advances in gene identification. Many novel Mendelian genes have only been identified in a few families worldwide. Here we report the identification of an autosomal-dominant gene for hereditary spastic paraplegia (HSP) in 10 families that are of diverse geographic origin and whose affected members all carry unique truncating changes in a circumscript region of UBAP1 (ubiquitin-associated protein 1). HSP is a neurodegenerative disease characterized by progressive lower-limb spasticity and weakness, as well as frequent bladder dysfunction. At least 40% of affected persons are currently undiagnosed after exome sequencing. We identified pathological truncating variants in UBAP1 in affected persons from Iran, USA, Germany, Canada, Spain, and Bulgarian Roma. The genetic support ranges from linkage in the largest family (LOD = 8.3) to three confirmed de novo mutations. We show that mRNA in the fibroblasts of affected individuals escapes nonsense-mediated decay and thus leads to the expression of truncated proteins; in addition, concentrations of the full-length protein are reduced in comparison to those in controls. This suggests either a dominant-negative effect or haploinsufficiency. UBAP1 links endosomal trafficking to the ubiquitination machinery pathways that have been previously implicated in HSPs, and UBAP1 provides a bridge toward a more unified pathophysiology.
Asunto(s)
Proteínas Portadoras/genética , Mutación , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Bases de Datos Factuales , Modelos Animales de Enfermedad , Endosomas/metabolismo , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Genes Dominantes , Ligamiento Genético , Predisposición Genética a la Enfermedad , Genómica , Células HEK293 , Haploinsuficiencia , Humanos , Masculino , Persona de Mediana Edad , Linaje , Isoformas de Proteínas , Adulto Joven , Pez CebraRESUMEN
Lead (Pb) is extremely toxic and a major cause of chronic diseases worldwide. Pb is associated with health disparities, particularly within low-income populations. In biological systems, Pb mimics calcium and, among other effects, interrupts cell signaling. Furthermore, Pb exposure results in epigenetic changes that affect multigenerational gene expression. Exposure to Pb has decreased through primary prevention, including removal of Pb solder from canned food, regulating lead-based paint, and especially eliminating Pb additives in gasoline. While researchers observe a continuous decline in children's blood lead (BPb), reservoirs of exposure persist in topsoil, which stores the legacy dust from leaded gasoline and other sources. Our surveys of metropolitan New Orleans reveal that median topsoil Pb in communities (n = 274) decreased 44% from 99 mg/kg to 54 mg/kg (P value of 2.09 × 10-08), with a median depletion rate of â¼2.4 mgâ kgâ y-1 over 15 y. From 2000 through 2005 to 2011 through 2016, children's BPb declined from 3.6 µg/dL to 1.2 µg/dL or 64% (P value of 2.02 × 10-85), a decrease of â¼0.2 µgâ dLâ y-1 during a median of 12 y. Here, we explore the decline of children's BPb by examining a metabolism of cities framework of inputs, transformations, storages, and outputs. Our findings indicate that decreasing Pb in topsoil is an important factor in the continuous decline of children's BPb. Similar reductions are expected in other major US cities. The most contaminated urban communities, usually inhabited by vulnerable populations, require further reductions of topsoil Pb to fulfill primary prevention for the nation's children.
Asunto(s)
Plomo/sangre , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Humanos , Plomo/análisis , Nueva Orleans/epidemiologíaRESUMEN
Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , ATPasa Intercambiadora de Sodio-Potasio/química , Adulto JovenRESUMEN
Lead is a well-known toxicant associated with numerous chronic diseases. Curtailing industrial emissions, leaded paint, lead in food, and banning highway use of leaded gasoline effectively decreased children's exposure. In New Orleans, irrespective of Hurricane Katrina flooding, lead declined concurrently in topsoil and children's blood. We postulate that topsoil lead and blood lead decreases are associated and common in U.S. cities. This study tests that concept. A small 2002 soil lead survey of 8 Detroit Tri-County Area census tracts was repeated in October 2019. Between 2002 and 2019, Detroit median soil lead decreased from 183 to 92 mg/kg (or 5.4 mg/kg/yr.) and declined in Pontiac from 93 to 68 mg/kg (or 1.4 mg/kg/yr.). Median soil lead remained ~10 mg/kg in outlying communities. Median soil lead (in mg/kg) in communities at < 21 km compared to ≥ 21 km from central Detroit, respectively, decreased from 183 to 33 (P-value 10-12) in 2002 and from 92 to 35 (P-value 10-07) in 2019. Children's lead exposures were highest in Detroit (population 0.7 million in 2010) and lower by more than half in Pontiac (population 60 thousand in 2010). Between 2002 and 2018, children with blood lead ≥4.5 µg/dL in Detroit declined from 44% to 5%, and in Pontiac from 17% to 2%. The most vulnerable children live in the most lead contaminated communities. To meet the goal of primary prevention for children, along with other efforts, this study supports landscaping with low lead soil to reduce exposure in lead contaminated communities.
Asunto(s)
Plomo , Contaminantes del Suelo , Niño , Ciudades , Humanos , Michigan , Nueva Orleans , Suelo , Contaminantes del Suelo/análisisRESUMEN
BACKGROUND: Anthropogenic re-distribution of lead (Pb) principally through its use in gasoline additives and lead-based paints have transformed the urban exposome. This unique study tracks urban-scale soil Pb (SPb) and blood Pb (BPb) responses of children living in public and private communities in New Orleans before and ten years after Hurricane Katrina (29 August 2005). OBJECTIVES: To compare and evaluate associations of pre- and ten years post-Katrina SPb and children's BPb on public and private residential census tracts in the core and outer areas of New Orleans, and to examine correlations between SPb and nine other soil metals. METHODS: The Louisiana Healthy Housing and Childhood Lead Poisoning Prevention Program BPb (µg/dL) data from pre- (2000-2005) and post-Katrina (2010-2015) for ≤6-year-old children. Data from public and adjacent private residential census tracts within core and outer areas are stratified from a database that includes 916 and 922 SPb and 13,379 and 4830 BPb results, respectively, from pre- and post-Katrina New Orleans. Statistical analyses utilize Multi-Response Permutation Procedure and Spearman's Rho Correlation. RESULTS: Pre- to Post-Katrina median SPb decreases in public and private core census tracts were from 285 to 55mg/kg and 710-291mg/kg, respectively. In public and private outer census tracts the median SPb decreased from 109 to 56mg/kg and 88-55mg/kg. Children's BPb percent ≥5µg/dL on public and private core areas pre-Katrina was 63.2% and 67.5%, and declined post-Katrina to 7.6% and 20.2%, respectively. BPb decreases also occurred in outer areas. Soil Pb is strongly correlated with other metals. CONCLUSIONS: Post-Katrina re-building of public housing plus landscaping amends the exposome and reduces children's BPb. Most importantly, Hurricane Katrina revealed that decreasing the toxicants in the soil exposome is an effective intervention for decreasing children's BPb.
Asunto(s)
Tormentas Ciclónicas , Metales Pesados/sangre , Contaminantes del Suelo/sangre , Niño , Monitoreo del Ambiente , Vivienda , Humanos , Metales Pesados/análisis , Nueva Orleans , Contaminantes del Suelo/análisisRESUMEN
BACKGROUND: Sagittal displacement in patients with end stage ankle arthritis has been described as the tibiotalar ratio (TTR). Yet the incidence, distribution and predictive factors of talolisthesis are unknown. METHODS: The radiographs of 470 cases of ankle arthritis were compared with a control group of 49 normal ankles. The TTR was measured for both groups. Additional co-variables included the anterior and lateral distal tibial angles, and talar tilt. RESULTS: The mean TTR in the arthritis cohort was 34.8+9.12 compared to the normal group of 34.1+2.62. Twenty-eight percent of the ankles had anterior displacement and twenty-eight percent had posterior talolisthesis, while forty-four percent had normal tibiotalar alignment. Multivariate linear regression revealed significant predictors of anterior distal tibial angle (p<0.0001) and talar tilt (p=0.0007) for abnormal TTR. CONCLUSION: Sagittal displacement is common in end stage ankle arthritis and is affected by ligamentous laxity and joint morphology.
Asunto(s)
Articulación del Tobillo/diagnóstico por imagen , Inestabilidad de la Articulación/diagnóstico por imagen , Osteoartritis/diagnóstico por imagen , Astrágalo/diagnóstico por imagen , Adulto , Articulación del Tobillo/fisiopatología , Articulación del Tobillo/cirugía , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/fisiopatología , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Procedimientos Ortopédicos/métodos , Osteoartritis/complicaciones , Osteoartritis/fisiopatología , Radiografía/métodos , Valores de Referencia , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , Astrágalo/patologíaRESUMEN
Disease effects on host population dynamics and the transmission of pathogens between hosts are two important challenges for understanding how epizootics wax and wane and how disease influences host population dynamics. For the management of marine shellfish resources, marine diseases pose additional challenges in early intervention after the appearance of disease, management of the diseased population to limit a decline in host abundance, and application of measures to restrain that decline once it occurs. Mathematical models provide one approach for quantifying these effects and addressing the competing goals of managing the diseased population versus managing the disease. The majority of models for molluscan diseases fall into three categories distinguished by these competing goals. (1) Models that consider disease effects on the host population tend to focus on pathogen proliferation within the host. Many of the well-known molluscan diseases are pandemic, in that they routinely reach high prevalence rapidly over large geographic expanses, are characterized by transmission that does not depend upon a local source, and exert a significant influence on host population dynamics. Models focused on disease proliferation examine the influence of environmental change on host population metrics and provide a basis to better manage diseased stocks. Such models are readily adapted to questions of fishery management and habitat restoration. (2) Transmission models are designed to understand the mechanisms triggering epizootics, identify factors impeding epizootic development, and evaluate controls on the rate of disease spread over the host's range. Transmission models have been used extensively to study terrestrial diseases, yet little attention has been given to their potential for understanding the epidemiology of marine molluscan diseases. For management of diseases of wild stocks, transmission models open up a range of options, including the application of area management, manipulation of host abundance, and use of scavengers and filter feeders to limit the concentration of infective particles. (3) The details of host population processes and pathogen transmission dynamics are blended in models that evaluate the effects of natural selection and/or genetic modification in developing disease resistance in the host population. Application of gene-based models to marine diseases is only now beginning and represents a promising approach that may provide a mechanistic basis for managing marine diseases and their host populations. Overall disease models remain both uncommon and underutilized in addressing the needs for managing molluscan diseases and their host populations.
Asunto(s)
Interacciones Huésped-Parásitos , Moluscos , Mariscos , Animales , Modelos Teóricos , Dinámica Poblacional/tendenciasRESUMEN
KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function.
Asunto(s)
Enfermedades del Desarrollo Óseo/complicaciones , Huesos/anomalías , Discapacidad Intelectual/complicaciones , Mutación/genética , Proteínas Represoras/genética , Anomalías Dentarias/complicaciones , Anomalías Múltiples/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Enfermedades del Desarrollo Óseo/genética , Núcleo Celular/metabolismo , Niño , Análisis Mutacional de ADN , Exones/genética , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/química , Anomalías Dentarias/genética , Adulto JovenRESUMEN
We present a rigorous validation strategy to evaluate the performance of Ultivue multiplex immunofluorescence panels. We have quantified the accuracy and precision of four different multiplex panels (three human and one mouse) in tumor specimens with varying levels of T cell density. Our results show that Ultivue panels are typically accurate wherein the relative difference in cell proportion between a multiplex image and a 1-plex image is less than 20% for a given biomarker. Ultivue panels exhibited relatively high intra-run precision (CV ≤ 25%) and relatively low inter-run precision (CV >> 25%) which can be remedied by using local intensity thresholding to gate biomarker positivity. We also evaluated the reproducibility of cell-cell distance estimates measured from multiplex images which show high intra- and inter-run precision. We introduce a new metric, multiplex labeling efficiency, which can be used to benchmark the overall fidelity of the multiplex data across multiple batch runs. Taken together our results provide a comprehensive characterization of Ultivue panels and offer practical guidelines for analyzing multiplex images.
Asunto(s)
Neoplasias , Animales , Humanos , Ratones , Biomarcadores , Formaldehído , Neoplasias/patología , Adhesión en Parafina/métodos , Reproducibilidad de los ResultadosRESUMEN
In the past decade, human genetics research saw an acceleration of disease gene discovery and further dissection of the genetic architectures of many disorders. Much of this progress was enabled via data aggregation projects, collaborative data sharing among researchers, and the adoption of sophisticated and standardized bioinformatics analyses pipelines. In 2012, we launched the GENESIS platform, formerly known as GEM.app, with the aims to 1) empower clinical and basic researchers without bioinformatics expertise to analyze and explore genome level data and 2) facilitate the detection of novel pathogenic variation and novel disease genes by leveraging data aggregation and genetic matchmaking. The GENESIS database has grown to over 20,000 datasets from rare disease patients, which were provided by multiple academic research consortia and many individual investigators. Some of the largest global collections of genome-level data are available for Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and cerebellar ataxia. A number of rare disease consortia and networks are archiving their data in this database. Over the past decade, more than 1500 scientists have registered and used this resource and published over 200 papers on gene and variant identifications, which garnered >6000 citations. GENESIS has supported >100 gene discoveries and contributed to approximately half of all gene identifications in the fields of inherited peripheral neuropathies and spastic paraplegia in this time frame. Many diagnostic odysseys of rare disease patients have been resolved. The concept of genomes-to-therapy has borne out for a number of such discoveries that let to rapid clinical trials and expedited natural history studies. This marks GENESIS as one of the most impactful data aggregation initiatives in rare monogenic diseases.
Asunto(s)
Bases de Datos Genéticas , Genómica , Humanos , Genómica/métodos , Bases de Datos Genéticas/tendencias , Biología Computacional/métodosRESUMEN
Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets (https://genomics.med.miami.edu/). GEM.app currently contains â¼1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user-friendly analysis for nonbioinformaticians to make next-generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across â¼1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease.
Asunto(s)
Genómica , Programas Informáticos , Biología Computacional/métodos , Seguridad Computacional , Genómica/métodos , Humanos , Internet , Reproducibilidad de los Resultados , Interfaz Usuario-ComputadorRESUMEN
Genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) have consistently observed strong evidence of association with polymorphisms in APOE. However, until recently, variants at few other loci with statistically significant associations have replicated across studies. The present study combines data on 483,399 single nucleotide polymorphisms (SNPs) from a previously reported GWAS of 492 LOAD cases and 496 controls and from an independent set of 439 LOAD cases and 608 controls to strengthen power to identify novel genetic association signals. Associations exceeding the experiment-wide significance threshold (alpha=1.03x10(-7)) were replicated in an additional 1,338 cases and 2,003 controls. As expected, these analyses unequivocally confirmed APOE's risk effect (rs2075650, P=1.9x10(-36)). Additionally, the SNP rs11754661 at 151.2 Mb of chromosome 6q25.1 in the gene MTHFD1L (which encodes the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein) was significantly associated with LOAD (P=4.70x10(-8); Bonferroni-corrected P=0.022). Subsequent genotyping of SNPs in high linkage disequilibrium (r2>0.8) with rs11754661 identified statistically significant associations in multiple SNPs (rs803424, P=0.016; rs2073067, P=0.03; rs2072064, P=0.035), reducing the likelihood of association due to genotyping error. In the replication case-control set, we observed an association of rs11754661 in the same direction as the previous association at P=0.002 (P=1.90x10(-10) in combined analysis of discovery and replication sets), with associations of similar statistical significance at several adjacent SNPs (rs17349743, P=0.005; rs803422, P=0.004). In summary, we observed and replicated a novel statistically significant association in MTHFD1L, a gene involved in the tetrahydrofolate synthesis pathway. This finding is noteworthy, as MTHFD1L may play a role in the generation of methionine from homocysteine and influence homocysteine-related pathways and as levels of homocysteine are a significant risk factor for LOAD development.
Asunto(s)
Enfermedad de Alzheimer/genética , Cromosomas Humanos Par 6/genética , Demencia/genética , Ácido Fólico/metabolismo , Sitios Genéticos/genética , Redes y Vías Metabólicas/genética , Anciano , Aminohidrolasas/genética , Emparejamiento Base/genética , Bases de Datos Genéticas , Demografía , Femenino , Formiato-Tetrahidrofolato Ligasa/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Complejos Multienzimáticos/genética , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Cyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance. METHODS: Tissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival. RESULTS: Novel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C. CONCLUSIONS: We identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03401359. The trial was posted on 18 January 2018 and registered prospectively.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Multiómica , Receptor ErbB-2/genética , Receptor ErbB-2/análisis , Receptor ErbB-2/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Receptores de Estrógenos/genética , Receptores de Estrógenos/análisis , Receptores de Estrógenos/uso terapéutico , Estrógenos/uso terapéuticoRESUMEN
OBJECTIVE: Charcot-Marie-Tooth (CMT) disease comprises a large number of genetically distinct forms of inherited peripheral neuropathies. The relative uniform phenotypes in many patients with CMT make it difficult to decide which of the over 35 known CMT genes are affected in a given patient. Genetic testing decision trees are therefore broadly based on a small number of major subtypes (eg, CMT1, CMT2) and the observed mutation frequency for CMT genes. Since conventional genetic testing is expensive many rare genes are not being tested for at all. METHODS: Whole-exome sequencing has recently been introduced as a novel and alternative approach. This method is capable of resequencing a nearly complete set of coding exons in an individual. We performed whole-exome sequencing in an undiagnosed family with CMT. RESULTS: Within over 24,000 variants detected in 2 exomes of a CMT family, we identified a nonsynonymous GJB1 (Cx32) mutation. This variant had been reported previously as pathogenic in X-linked CMT families. Sanger sequencing confirmed complete cosegregation in the family. Affected individuals had a marked early involvement of the upper distal extremities and displayed a mild reduction of nerve conduction velocities. INTERPRETATION: We have shown for the first time in a genetically highly heterogeneous dominant disease that exome sequencing is a valuable method for comprehensive medical diagnosis. Further improvements of exon capture design, next-generation sequencing accuracy, and a constant price decline will soon lead to the adoption of genomic approaches in gene testing of Mendelian disease.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exones , Pruebas Genéticas/métodos , Mutación , Adolescente , Adulto , Femenino , Humanos , Masculino , Linaje , FenotipoRESUMEN
PURPOSE: To compare the compression strength and pull-apart resistance of 5 single-piece scaphoid bone compression screws (Acutrak, Asnis, Herbert, Herbert-Whipple, and Little Grafter), with those of 2 dual-component screws (Kompressor and TwinFix). METHODS: Two blocks of polyurethane foam were compressed with a screw while held in a tension test machine, with the force measured at full insertion of the screw. The 2 blocks were then pulled apart, and the maximum resistive force was measured. RESULTS: The dual-component screws (Kompressor and TwinFix) gave greater compression force than the single-component screws, with the Kompressor screw giving statistically significantly greater compression than the TwinFix. The pull-apart resistance forces did not show such clear differences. CONCLUSIONS: The Kompressor screw achieves the greatest compressive forces and has one of the highest pull-apart forces. CLINICAL RELEVANCE: When compression and pull-apart resistance are considered, the Kompressor screw has advantages over other methods of scaphoid fixation.
Asunto(s)
Tornillos Óseos , Fuerza Compresiva , Falla de Equipo , Hueso Escafoides/cirugía , Resistencia a la Tracción , Diseño de Equipo , Humanos , Modelos Anatómicos , PoliuretanosRESUMEN
(1) Background: Leaded petrol became a worldwide vehicle fuel during the 20th century. While leaded petrol was totally banned on 30 August 2021, its lead (Pb) dust legacy remains in the environment as soil Pb. The health impacts of Pb are well known and risks occur when exposures are above zero. The inextricable links between air Pb, soil Pb, and blood Pb are not widely A. Exposure risks continue even after banning leaded petrol and must be explored. (2) Methods: This article evaluates selected examples of temporal measurements of atmospheric Pb and human Pb exposure and the effect of soil Pb on blood Pb. Several search engines were used to find articles on temporal changes in air Pb and human Pb exposures. New Orleans studies provided empirical data on the association between soil Pb and blood Pb. (3) Results: Vehicle Pb emission trends are closely associated with air Pb and blood Pb. Air Pb deposited in soil becomes a reservoir of Pb dust that is known to be remobilized into the atmosphere. (4) Conclusions: The dust from leaded petrol continues to pose major exposure risks to humans. Exogenous sources of Pb in soil and its remobilization into air along with endogenous bone Pb establish the baseline exposure of children and adults. Reducing human exposure to Pb requires novel policies to decrease exogenous contact from the reservoir of Pb in soil and curtailing remobilization of soil Pb into the atmosphere. Mitigating exposure to soil Pb must therefore play a central role in advancing primary prevention.
Asunto(s)
Contaminantes del Suelo , Suelo , Adulto , Niño , Polvo/análisis , Monitoreo del Ambiente , Humanos , Plomo , Contaminantes del Suelo/análisis , Emisiones de Vehículos/análisisRESUMEN
Crassostrea oysters are protandrous hermaphrodites. Sex is thought to be determined by a single gene with a dominant male allele M and a recessive protandrous allele F, such that FF animals are protandrous and MF animals are permanent males. We investigate the possibility that a reduction in generation time, brought about for example by disease, might jeopardize retention of the M allele. Simulations show that MF males have a significantly lessened lifetime fecundity when generation time declines. The allele frequency of the M allele declines and eventually the M allele is lost. The probability of loss is modulated by population abundance. As abundance increases, the probability of M allele loss declines. Simulations suggest that stabilization of the female-to-male ratio when generation time is long is the dominant function of the M allele. As generation time shortens, the raison d'être for the M allele also fades as mortality usurps the stabilizing role. Disease and exploitation have shortened oyster generation time: one consequence may be to jeopardize retention of the M allele. Two alternative genetic bases for protandry also provide stable sex ratios when generation time is long; an F-dominant protandric allele and protandry restricted to the MF heterozygote. In both cases, simulations show that FF individuals become rare in the population at high abundance and/or long generation time. Protandry restricted to the MF heterozygote maintains sex ratio stability over a wider range of generation times and abundances than the alternatives, suggesting that sex determination based on a male-dominant allele (MM/MF) may not be the optimal solution to the genetic basis for protandry in Crassostrea.
Asunto(s)
Modelos Genéticos , Ostreidae/genética , Procesos de Determinación del Sexo/genética , Animales , Femenino , Frecuencia de los Genes , Masculino , Densidad de Población , Dinámica Poblacional , Razón de MasculinidadRESUMEN
The advent of molecular detection assays has provided a set of very sensitive tools for the detection of pathogens in marine organisms, but it has also raised problems of how to interpret positive signals that are not accompanied by visual confirmation. PCR-positive results have recently been reported for Haplosporidium nelsoni (MSX), a pathogen of the oyster Crassostrea virginica in 31 of 40 oysters from 6 sites in the Gulf of Mexico and the Caribbean Sea. Histological confirmation of the PCR results was not undertaken, and no haplosporidian has been reported from the numerous histological studies and surveys of oysters in the region. To further investigate the possibility that H. nelsoni is present in this region, we sampled 210 oysters from 40 sites around the Gulf of Mexico and Puerto Rico using PCR and 180 of these using tissue-section histology also. None of the oysters showed evidence of H. nelsoni by PCR or of any haplosporidian by histology. We cannot, therefore, confirm that H. nelsoni is present and widespread in the Gulf of Mexico and the Caribbean Sea. Our results do not prove that H. nelsoni is absent from the region, but taken together with results from previous histological surveys, they suggest that for the purposes of controlling oyster importation, the region should continue to be considered free of the parasite.