Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 280: 120322, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586443

RESUMEN

The superior colliculus (SC) plays a major role in orienting movements of eyes and the head and in the allocation of attention. Functions of the SC have been mostly investigated in animal models, including non-human primates. Differences in the SC's anatomy and function between different species question extrapolations of these studies to humans without further validation. Few electrophysiological and neuroimaging studies in animal models and humans have reported a role of the SC in visually guided reaching movements. Using BOLD fMRI imaging, we sought to decipher if the SC is also active during reaching movements guided by tactile stimulation. Participants executed reaching movements to visual and tactile target positions. When contrasted against visual and tactile stimulation without reaching, we found increased SC activity with reaching not only for visual but also for tactile targets. We conclude that the SC's involvement in reaching does not rely on visual inputs. It is also independent from a specific sensory modality. Our results indicate a general involvement of the human SC in upper limb reaching movements.


Asunto(s)
Movimiento , Colículos Superiores , Animales , Humanos , Colículos Superiores/diagnóstico por imagen , Colículos Superiores/fisiología , Estimulación Luminosa , Movimiento/fisiología , Primates , Atención/fisiología
2.
Eur J Neurosci ; 45(5): 631-642, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977051

RESUMEN

Behavioural evidences suggest that sequential saccades to multiple stimuli are planned in parallel. However, it remains unclear whether such parallel programming reflects concurrent processing of goals or whether multiple motor plans coexist, unfolding subsequently during execution. Here we use midway saccades, directed at intermediate locations between two targets, as a probe to address this question in a novel double-step adaptation task. The task consisted of trials where subjects had to follow the appearance of two targets presented in succession with two sequential saccades. In some trials, the second target predictably jumped to a new location during the second saccade. Initially, the second saccade was aimed at the final target's location before the jump. As subjects adapted to the target jump, saccades were aimed to the second target's new location. We tested whether the spatial distribution of midway saccades could be explained as an interaction between two concurrent saccade goals, each directed at the two target locations, or between the initial motor plan to the first target location and a prospective motor plan directed from the initial to the final target location. A shift in the midway saccades' distribution towards the jumped location of the second target following adaptation indicated that the brain can make use of prospective motor plans to guide sequential eye movements. Furthermore, we observed that the spatiotemporal pattern of endpoints of midway saccades can be well explained by a motor addition model. These results provide strong evidence of parallel activation of prospective motor plans during sequential saccades.


Asunto(s)
Desempeño Psicomotor , Movimientos Sacádicos , Adulto , Femenino , Humanos , Masculino , Percepción Visual
3.
Sci Rep ; 14(1): 1769, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243013

RESUMEN

Electrophysiological studies in macaques and functional neuroimaging in humans revealed a motor region in the superior colliculus (SC) for upper limb reaching movements. Connectivity studies in macaques reported direct connections between this SC motor region and cortical premotor arm, hand, and finger regions. These findings motivated us to investigate if the human SC is also involved in sequential finger tapping movements. We analyzed fMRI task data of 130 subjects executing finger tapping from the Human Connectome Project. While we found strong signals in the SC for visual cues, we found no signals related to simple finger tapping. In subsequent experimental measurements, we searched for responses in the SC corresponding to complex above simple finger tapping sequences. We observed expected signal increases in cortical motor and premotor regions for complex compared to simple finger tapping, but no signal increases in the motor region of the SC. Despite evidence for direct anatomical connections of the SC motor region and cortical premotor hand and finger areas in macaques, our results suggest that the SC is not involved in simple or complex finger tapping in humans.


Asunto(s)
Conectoma , Colículos Superiores , Humanos , Animales , Mapeo Encefálico , Movimiento/fisiología , Mano , Dedos/fisiología , Macaca , Imagen por Resonancia Magnética/métodos
4.
Front Behav Neurosci ; 12: 280, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30546299

RESUMEN

We present a comparison of the sugar-elicited search behavior in Drosophila melanogaster and Apis mellifera. In both species, intake of sugar-water elicits a complex of searching responses. The most obvious response was an increase in turning frequency. However, we also found that flies and honey bees returned to the location of the sugar drop. They even returned to the food location when we prevented them from using visual and chemosensory cues. Analyses of the recorded trajectories indicated that flies and bees use two mechanisms, a locomotor pattern involving an increased turning frequency and path integration to increase the probability to stay close or even return to the sugar drop location. However, evidence for the use of path integration in honey bees was less clear. In general, walking trajectories of honey bees showed a higher degree of curvature and were more spacious; two characters which likely masked evidence for the use of path integration in our experiments. Visual cues, i.e., a black dot, presented underneath the sugar drop made flies and honey bees stay closer to the starting point of the search. In honey bees, vertical black columns close to the sugar drop increased the probability to visit similar cues in the vicinity. An additional one trial learning experiment suggested that the intake of sugar-water likely has the potential to initiate an associative learning process. Together, our experiments indicate that the sugar-elicited local search is more complex than previously assumed. Most importantly, this local search behavior appeared to exhibit major behavioral capabilities of large-scale navigation. Thus, we propose that sugar-elicited search behavior has the potential to become a fruitful behavioral paradigm to identify neural and molecular mechanisms involved in general mechanisms of navigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA