RESUMEN
PURPOSE: Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS: We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS: [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION: [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Asunto(s)
Glioblastoma , Ratas , Animales , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Distribución Tisular , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , PrimatesRESUMEN
PURPOSE: To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS: The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS: SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION: We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.
Asunto(s)
Glicoproteínas de Membrana , Vesículas Sinápticas , Aminoacridinas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Vesículas Sinápticas/metabolismoRESUMEN
PURPOSE: Synaptic abnormalities are associated with many brain disorders. Recently, we developed a novel synaptic vesicle glycoprotein 2A (SV2A) radiotracer [18F]SynVesT-1 and demonstrated its excellent imaging and binding properties in nonhuman primates. The aim of this study was to perform dosimetry calculations in nonhuman primates and to evaluate this tracer in humans and assess its test-retest reliability in comparison with [11C]UCB-J. METHODS: Three rhesus monkeys underwent whole body dynamic PET scanning to estimate the absorbed dose. PET scans in six healthy human subjects were acquired. Time-activity curves (TACs) were generated with defined regions of interest (ROI). Reproducibility of distribution volume (VT) values and its sensitivity to scan duration were assessed with the one-tissue compartment (1TC) model. Non-displaceable binding potential (BPND) was calculated using centrum semiovale as the reference region. RESULTS: The dosimetry study showed high uptake in the urinary bladder and brain. In humans, [18F]SynVesT-1 displayed high uptake with maximum SUV of ~10 and appropriate kinetics with a quick rise in tracer uptake followed by a gradual clearance. Mean 1TC VT values (mL/cm3) ranged from 3.4 (centrum semiovale) to 19.6 (putamen) and were similar to those of [11C]UCB-J. Regional BPND values were 2.7-4.7 in gray matter areas, and mean BPND values across all ROIs were ~ 21% higher than those of [11C]UCB-J. The absolute test-retest variability of VT and BPND was excellent (< 9%) across all brain regions. CONCLUSIONS: [18F]SynVesT-1 demonstrates outstanding characteristics in humans: fast and high brain uptake, appropriate tissue kinetics, high levels of specific binding, and excellent test-retest reproducibility of binding parameters. As such, [18F]SynVesT-1 is proved to be a favorable radiotracer for SV2A imaging and quantification in humans.
Asunto(s)
Tomografía de Emisión de Positrones , Vesículas Sinápticas , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor , Glicoproteínas , Piridinas , Pirrolidinonas , Radiofármacos , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVE: Brivaracetam (BRV) and levetiracetam (LEV) are antiepileptic drugs that bind synaptic vesicle glycoprotein 2A (SV2A). In vitro and in vivo animal studies suggest faster brain penetration and SV2A occupancy (SO) after dosing with BRV than LEV. We evaluated human brain penetration and SO time course of BRV and LEV at therapeutically relevant doses using the SV2A positron emission tomography (PET) tracer 11 C-UCB-J (EP0074; NCT02602860). METHODS: Healthy volunteers were recruited into three cohorts. Cohort 1 (n = 4) was examined with PET at baseline and during displacement after intravenous BRV (100 mg) or LEV (1500 mg). Cohort 2 (n = 5) was studied during displacement and 4 hours postdose (BRV 50-200 mg or LEV 1500 mg). Cohort 3 (n = 4) was examined at baseline and steady state after 4 days of twice-daily oral dosing of BRV (50-100 mg) and 4 hours postdose of LEV (250-600 mg). Half-time of 11 C-UCB-J signal change was computed from displacement measurements. Half-saturation concentrations (IC50 ) were determined from calculated SO. RESULTS: Observed tracer displacement half-times were 18 ± 6 minutes for BRV (100 mg, n = 4), 9.7 and 10.1 minutes for BRV (200 mg, n = 2), and 28 ± 6 minutes for LEV (1500 mg, n = 6). Estimated corrected half-times were 8 minutes shorter. The SO was 66%-70% for 100 mg intravenous BRV, 84%-85% for 200 mg intravenous BRV, and 78%-84% for intravenous 1500 mg LEV. The IC50 of BRV (0.46 µg/mL) was 8.7-fold lower than of LEV (4.02 µg/mL). BRV data fitted a single SO versus plasma concentration relationship. Steady state SO for 100 mg BRV was 86%-87% (peak) and 76%-82% (trough). SIGNIFICANCE: BRV achieves high SO more rapidly than LEV when intravenously administered at therapeutic doses. Thus, BRV may have utility in treating acute seizures; further clinical studies are needed for confirmation.
Asunto(s)
Anticonvulsivantes/farmacocinética , Levetiracetam/farmacocinética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroimagen/métodos , Tomografía de Emisión de Positrones , Pirrolidinonas/farmacocinética , Administración Oral , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/sangre , Anticonvulsivantes/metabolismo , Radioisótopos de Carbono , Femenino , Voluntarios Sanos , Humanos , Concentración 50 Inhibidora , Inyecciones Intravenosas , Levetiracetam/administración & dosificación , Levetiracetam/sangre , Levetiracetam/metabolismo , Imagen por Resonancia Magnética , Masculino , Unión Proteica , Pirrolidinonas/administración & dosificación , Pirrolidinonas/sangre , Pirrolidinonas/metabolismoRESUMEN
The kappa opioid receptor (KOR) is involved in depression, alcoholism, and drug abuse. The current agonist radiotracer 11C-GR103545 is not ideal for imaging KOR due to its slow tissue kinetics in human. The aim of our project was to develop novel KOR agonist radiotracers with improved imaging properties. A novel compound FEKAP ((( R))-4-(2-(3,4-dichlorophenyl)acetyl)-3-((ethyl(2-fluoroethyl)amino)methyl) piperazine-1-carboxylate) was designed, synthesized, and assayed for in vitro binding affinities. It was then radiolabeled and evaluated in rhesus monkeys. Baseline and blocking scans were conducted on a Focus-220 scanner to assess binding specificity and selectivity. Metabolite-corrected arterial activities over time were measured and used as input functions to analyze the brain regional time-activity curves and derive kinetic and binding parameters with kinetic modeling. FEKAP displayed high KOR binding affinity ( Ki = 0.43 nM) and selectivity (17-fold over mu opioid receptor and 323-fold over delta opioid receptor) in vitro. 11C-FEKAP was prepared in high molar activity (mean of 718 GBq/µmol, n = 19) and >99% radiochemical purity. In monkeys, 11C-FEKAP metabolized fairly fast, with â¼31% of intact parent fraction at 30 min post-injection. In the brain, it exhibited fast and reversible kinetics with good uptake. Pretreatment with the nonselective opioid receptor antagonist naloxone (1 mg/kg) decreased uptake in high binding regions to the level in the cerebellum, and the selective KOR antagonist LY2456302 (0.02 and 0.1 mg/kg) reduced 11C-FEKAP specific binding in a dose-dependent manner. As a measure of specific binding signals, the mean binding potential ( BPND) values of 11C-FEKAP derived from the multilinear analysis-1 (MA1) method were greater than 0.5 for all regions, except for the thalamus. The novel KOR agonist tracer 11C-FEKAP demonstrated binding specificity and selectivity in vivo and exhibited attractive properties of fast tissue kinetics and high specific binding.
Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Piperazinas/síntesis química , Piperazinas/farmacología , Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Radiofármacos/síntesis química , Radiofármacos/farmacología , Receptores Opioides kappa/agonistas , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/farmacocinética , Macaca mulatta , Distribución TisularRESUMEN
The myriad physiological functions of γ-amino butyric acid (GABA) are mediated by the GABA-benzodiazepine receptor complex comprising of the GABAA, GABAB, and GABAC groups. The various GABAA subunits with region-specific distributions in the brain subserve different functional and physiological roles. For example, the sedative and anticonvulsive effects of classical benzodiazepines are attributed to the α1 subunit, and the α2 and α3 subunits mediate the anxiolytic effect. To optimize pharmacotherapies with improved efficacy and devoid of undesirable side effects for the treatment of anxiety disorders, subtype-selective imaging radiotracers are required to assess target engagement at GABA sites and determine the dose-receptor occupancy relationships. The goal of this work was to characterize, in nonhuman primates, the in vivo binding profile of a novel positron emission tomography (PET) radiotracer, [11C]ADO, which has been indicated to have functional selectivity for the GABAA α2/α3 subunits. High specific activity [11C]ADO was administrated to 3 rhesus monkeys, and PET scans of 120-minute duration were performed on the Focus-220 scanner. In the blood, [11C]ADO metabolized at a fairly rapid rate, with â¼36% of the parent tracer remaining at 30 minutes postinjection. Uptake levels of [11C]ADO in the brain were high (peak standardized uptake value of â¼3.0) and consistent with GABAA distribution, with highest activity levels in cortical areas, intermediate levels in cerebellum and thalamus, and lowest uptake in striatal regions and amygdala. Tissue kinetics was fast, with peak uptake in all brain regions within 20 minutes of tracer injection. The one-tissue compartment model provided good fits to regional time-activity curves and reliable measurement of kinetic parameters. The absolute test-retest variability of regional distribution volumes ( VT) was low, ranging from 4.5% to 8.7%. Pretreatment with flumazenil (a subtype nonselective ligand, 0.2 mg/kg, intravenous [IV], n = 1), Ro15-4513 (an α5-selective ligand, 0.03 mg/kg, IV, n = 2), and zolpidem (an α1-selective ligand, 1.7 mg/kg, IV, n = 1) led to blockade of [11C]ADO binding by 96.5%, 52.5%, and 76.5%, respectively, indicating the in vivo binding specificity of the radiotracer. Using the nondisplaceable volume of distribution ( VND) determined from the blocking studies, specific binding signals, as measured by values of regional binding potential ( BPND), ranged from 0.6 to 4.4, which are comparable to those of [11C]flumazenil. In conclusion, [11C]ADO was demonstrated to be a specific radiotracer for the GABAA receptors with several favorable properties: high brain uptake, fast tissue kinetics, and high levels of specific binding in nonhuman primates. However, subtype selectivity in vivo is not obvious for the radiotracer, and thus, the search for subtype-selective GABAA radiotracers continues.
Asunto(s)
Radioisótopos de Carbono/química , Tomografía de Emisión de Positrones , Pirroles/química , Quinolonas/química , Radiofármacos/química , Receptores de GABA-A/metabolismo , Animales , Femenino , Macaca mulatta , Masculino , Pirroles/sangre , Quinolonas/sangreRESUMEN
PURPOSE: The α7 nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α7 nAChRs PET radioligands, [18F]ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [18F]DBT-10 (7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [18F]ASEM in humans. METHODS: PET scans with high specific activity [18F]ASEM or [18F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [18F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [18F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [18F]ASEM distribution volume (V T). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V T was assessed. RESULTS: In the rhesus monkey brain [18F]ASEM and [18F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [18F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [18F]ASEM V T. [18F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [18F]ASEM V T in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V T values ranging from 19.6 ± 2.5 mL/cm3 in cerebellum to 25.9 ± 2.9 mL/cm3 in thalamus. Test-retest variability of V T was 11.7 ± 9.8%. CONCLUSIONS: These results confirm [18F]ASEM as a suitable radiotracer for the imaging and quantification of α7 nAChRs in humans.
Asunto(s)
Compuestos de Azabiciclo , Óxidos S-Cíclicos , Tomografía de Emisión de Positrones/métodos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Macaca mulatta , Masculino , Reproducibilidad de los ResultadosRESUMEN
Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling inâ vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight Gd(III) -based PSMA-targeted contrast agents containing one to three Gd(III) â chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an inâ vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging.
Asunto(s)
Antígenos de Superficie/análisis , Medios de Contraste , Gadolinio/administración & dosificación , Gadolinio/química , Glutamato Carboxipeptidasa II/análisis , Imagen por Resonancia Magnética/métodos , Línea Celular Tumoral , Humanos , MasculinoRESUMEN
PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.
RESUMEN
Arginine vasopressin is a hormone that is synthesized mainly in the hypothalamus and stored in the posterior pituitary. Receptors for vasopressin are categorized into at least 3 subtypes (V1A, V1B, and V2). Among these subtypes, the V1B receptor (V1BR), highly expressed in the pituitary, is a primary regulator of hypothalamic-pituitary-adrenal axis activity and thus a potential target for treatment of neuropsychiatric disorders such as depression and anxiety. N-tert-butyl-2-[2-(6-methoxypyridine-2-yl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP699) is a novel PET radiotracer with high affinity and selectivity for V1BR. The purpose of this study was to characterize the pharmacokinetic and binding profiles of 11C-TASP699 in humans and determine its utility in an occupancy study of a novel V1BR antagonist, TS-121. Methods: Six healthy subjects were scanned twice with 11C-TASP699 to determine the most appropriate kinetic model for analysis of imaging data and test-retest reproducibility of outcome measures. Nine healthy subjects were scanned before and after administration of TS-121 (active component: THY1773) to assess V1BR occupancy. Metabolite-corrected arterial input functions were obtained. Pituitary time-activity curves were analyzed with 1- and 2-tissue-compartment (1TC and 2TC, respectively) models and multilinear analysis 1 (MA1) to calculate distribution volume (VT). Relative test-retest variability (TRV) and absolute TRV were calculated. Since no brain region could be used as a reference region, percentage change in VT after TS-121 administration was computed to assess its receptor occupancy and correlate with plasma concentrations of the drug. Results:11C-TASP699 showed high uptake in the pituitary and no uptake in any brain region. The 2TC model provided better fits than the 1TC model. Because the MA1 VT estimates were similar to the 2TC VT estimates, MA1 was the model of choice. The TRV of VT was good (TRV, -2% ± 14%; absolute TRV, 11%). THY1773 reduced VT in a dose-dependent fashion, with a half-maximal inhibitory concentration of 177 ± 52 ng/mL in plasma concentration. There were no adverse events resulting in discontinuation from the study. Conclusion:11C-TASP699 was shown to display appropriate kinetics in humans, with substantial specific binding and good reproducibility of VT Therefore, this tracer is suitable for measurement of V1BR in the human pituitary and the V1BR occupancy of TS-121, a novel V1BR antagonist.
Asunto(s)
Sistema Hipotálamo-Hipofisario , Receptores de Vasopresinas , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Tomografía de Emisión de Positrones/métodos , Piridinas , Pirimidinonas , Receptores de Vasopresinas/metabolismo , Reproducibilidad de los ResultadosRESUMEN
A series of synaptic vesicle protein 2A (SV2A) ligands were synthesized to explore the structure-activity relationship and to help further investigate a hydrogen bonding pharmacophore hypothesis. Racemic SynVesT-1 was used as a lead compound to explore the replacement of the 3-methyl group on the pyridinyl moiety with halogens and hydrocarbons. Pyridinyl isomers of racemic SynVesT-1 were also investigated. Highly potent analogs were discovered including a 3-iodo pyridinyl ligand amenable to investigation as a PET or SPECT imaging agent.
RESUMEN
The use of synaptic vesicle glycoprotein 2A radiotracers with PET imaging could provide a way to measure synaptic density quantitatively in living humans. 11C-UCB-J ((R)-1-((3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one), previously developed and assessed in nonhuman primates and humans, showed excellent kinetic properties as a PET radioligand. However, it is labeled with the short half-life isotope 11C. We developed a new tracer, an 18F-labeled difluoro-analog of UCB-J (18F-SynVesT-1, also known as 18F-SDM-8), which displayed favorable properties in monkeys. The purpose of this first-in-human study was to assess the kinetic and binding properties of 18F-SynVesT-1 and compare with 11C-UCB-J. Methods: Eight healthy volunteers participated in a baseline study of 18F-SynVesT-1. Four of these subjects were also scanned after a blocking dose of the antiepileptic drug levetiracetam (20 mg/kg). Metabolite-corrected arterial input functions were measured. Regional time-activity curves were analyzed using 1-tissue-compartment (1TC) and 2-tissue-compartment (2TC) models and multilinear analysis 1 to compute total distribution volume (VT) and binding potential (BPND). The centrum semiovale was used as a reference region. The Lassen plot was applied to compute levetiracetam occupancy and nondisplaceable distribution volume. SUV ratio-1 (SUVR-1) over several time windows was compared with BPNDResults: Regional time-activity curves were fitted better with the 2TC model than the 1TC model, but 2TC VT estimates were unstable. The 1TC VT values matched well with those from the 2TC model (excluding the unstable values). Thus, 1TC was judged as the most useful model for quantitative analysis of 18F-SynVesT-1 imaging data. The minimum scan time for stable VT measurement was 60 min. The rank order of VT and BPND was similar between 18F-SynVesT-1 and 11C-UCB-J. Regional VT was slightly higher for 11C-UCB-J, but BPND was higher for 18F-SynVesT-1, though these differences were not significant. Levetiracetam reduced the uptake of 18F-SynVesT-1 in all regions and produced occupancy of 85.7%. The SUVR-1 of 18F-SynVesT-1 from 60 to 90 min matched best with 1TC BPNDConclusion: The novel synaptic vesicle glycoprotein 2A tracer, 18F-SynVesT-1, displays excellent kinetic and in vivo binding properties in humans and holds great potential for the imaging and quantification of synaptic density in neuropsychiatric disorders.
Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Tomografía de Emisión de Positrones/métodos , Piridinas/metabolismo , Pirrolidinonas/metabolismo , Vesículas Sinápticas/metabolismo , Adulto , Femenino , Voluntarios Sanos , Humanos , Ligandos , Masculino , Tomografía de Emisión de Positrones/efectos adversos , Piridinas/efectos adversos , Pirrolidinonas/efectos adversos , SeguridadRESUMEN
CONTEXT: Cortisol, a glucocorticoid steroid stress hormone, is primarily responsible for stimulating gluconeogenesis in the liver and promoting adipocyte differentiation and maturation. Prolonged excess cortisol leads to visceral adiposity, insulin resistance, hyperglycemia, memory dysfunction, cognitive impairment, and more severe Alzheimer's disease phenotypes. The intracellular enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) catalyzes the conversion of inactive cortisone to active cortisol; yet the amount of 11ß-HSD1 in the brain has not been quantified directly in vivo. OBJECTIVE: We analyzed positron emission tomography (PET) scans with an 11ß-HSD1 inhibitor radioligand in twenty-eight individuals (23 M/5F): 10 lean, 13 overweight, and 5 obese individuals. Each individual underwent PET imaging on the high-resolution research tomograph PET scanner after injection of 11C-AS2471907 (n = 17) or 18F-AS2471907 (n = 11). Injected activity and mass doses were 246 ± 130 MBq and 0.036 ± 0.039 µg, respectively, for 11C-AS2471907, and 92 ± 15 MBq and 0.001 ± 0.001 µg for 18F-AS2471907. Correlations of mean whole brain and regional distribution volume (VT) with body mass index (BMI) and age were performed with a linear regression model. RESULTS: Significant correlations of whole brain mean VT with BMI and age (VT = 15.23-0.63 × BMI + 0.27 × Age, p = 0.001) were revealed. Age-adjusted mean whole brain VT values were significantly lower in obese individuals. Post hoc region specific analyses revealed significantly reduced mean VT values in the thalamus (lean vs. overweight and lean vs. obese individuals). Caudate, hypothalamus, parietal lobe, and putamen also showed lower VT value in obese vs. lean individuals. A significant age-associated increase of 2.7 mL/cm3 per decade was seen in BMI-corrected mean whole brain VT values. CONCLUSIONS: In vivo PET imaging demonstrated, for the first time, correlation of higher BMI (obesity) with lower levels of the enzyme 11ß-HSD1 in the brain and correlation of increased 11ß-HSD1 levels in the brain with advancing age.
Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Envejecimiento/metabolismo , Índice de Masa Corporal , Encéfalo/diagnóstico por imagen , Encéfalo/enzimología , Tomografía de Emisión de Positrones , Adulto , Factores de Edad , Femenino , Humanos , Masculino , Especificidad de ÓrganosRESUMEN
Synaptic vesicle glycoprotein 2A (SV2A) is a 12-pass transmembrane glycoprotein ubiquitously expressed in presynaptic vesicles. In vivo imaging of SV2A using PET has potential applications in the diagnosis and prognosis of a variety of neuropsychiatric diseases, e.g., Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, autism, epilepsy, stroke, traumatic brain injury, post-traumatic stress disorder, depression, etc. Herein, we report the synthesis and evaluation of a new 18F-labeled SV2A PET imaging probe, [18F]SynVesT-2, which possesses fast in vivo binding kinetics and high specific binding signals in non-human primate brain.
Asunto(s)
Enfermedad de Alzheimer/patología , Epilepsia/patología , Glicoproteínas de Membrana/metabolismo , Vesículas Sinápticas/patología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Epilepsia/diagnóstico , Humanos , Proteínas del Tejido Nervioso/metabolismo , Primates/metabolismo , Vesículas Sinápticas/metabolismoRESUMEN
Structural disruption and alterations of synapses are associated with many brain disorders including Alzheimer's disease, epilepsy, depression, and schizophrenia. We have previously developed the PET radiotracer 11C-UCB-J for imaging and quantification of synaptic vesicle glycoprotein 2A (SV2A) and synaptic density in nonhuman primates and humans. Here we report the synthesis of a novel radiotracer 18F-SDM-8 and its in vivo evaluation in rhesus monkeys. The in vitro binding assay of SDM-8 showed high SV2A binding affinity ( Ki = 0.58 nM). 18F-SDM-8 was prepared in high molar activity (241.7 MBq/nmol) and radiochemical purity (>98%). In the brain, 18F-SDM-8 displayed very high uptake with peak standardized uptake value (SVU) greater than 8 and fast and reversible kinetics. A displacement study with levetiracetam and blocking studies with UCB-J and levetiracetam demonstrated its binding reversibility and specificity toward SV2A. Regional binding potential values were calculated and ranged from 0.8 in the brainstem to 4.5 in the cingulate cortex. By comparing to 11C-UCB-J, 18F-SDM-8 displayed the same attractive imaging properties: very high brain uptake, appropriate tissue kinetics, and high levels of specific binding. Given the longer half-life of F-18 and the feasibility for central production and multisite distribution, 18F-SDM-8 holds promise as an excellent radiotracer for SV2A and as a biomarker for synaptic density measurement in neurodegenerative diseases and psychiatric disorders.
Asunto(s)
Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Animales , Evaluación Preclínica de Medicamentos/métodos , Giro del Cíngulo/efectos de los fármacos , Macaca mulatta , Primates , Radiofármacos/administración & dosificación , RatasRESUMEN
The 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme converts cortisone to cortisol and participates in the regulation of glucocorticoid levels in tissues. 11ß-HSD1 is expressed in the liver, kidney, adipose tissue, placenta, and brain. 11ß-HSD1 is a target for treatment of depression, anxiety, posttraumatic stress disorder, and also against age-related cognitive function and memory loss. In this study, we evaluated the radiotracer 11C-AS2471907 (3-(2-chlorophenyl)-4-(methyl-11C)-5-[2-[2,4,6-trifluorophenoxy]propan-2-yl]-4H-1,2,4-triazole) to image 11ß-HSD1 availability in the human brain with PET. Methods: Fifteen subjects were included in the study. All subjects underwent one 2-h scan after a bolus administration of 11C-AS2471907. Two subjects underwent an additional scan after blockade with the selective and high-affinity 11ß-HSD1 inhibitor ASP3662 to evaluate 11C-AS2471907 nondisplaceable distribution volume. Five subjects also underwent an additional scan to evaluate the within-day test-retest variability of 11C-AS2471907 volumes of distribution (VT). Results:11C-AS2471907 time-activity curves were best fitted by the 2-tissue-compartment (2TC) model. 11C-AS2471907 exhibited a regionally varying pattern of uptake throughout the brain. The VT of 11C-AS2471907 ranged from 3.7 ± 1.5 mL/cm3 in the caudate nucleus to 14.5 ± 5.3 mL/cm3 in the occipital cortex, with intermediate values in the amygdala, white matter, cingulum, insula, frontal cortex, putamen, temporal and parietal cortices, cerebellum, and thalamus (from lowest to highest VT). From the blocking scans, nondisplaceable distribution volume was determined to be 0.16 ± 0.04 mL/cm3 for 11C-AS2471907. Thus, nearly all uptake was specific and the binding potential ranged from 22 in the caudate to 90 in the occipital cortex. Test-retest variability of 2TC VT values was less than 10% in most large cortical regions (14% in parietal cortex) and ranged from 14% (cerebellum) to 51% (amygdala) in other regions. The intraclass correlation coefficient of 2TC VT values ranged from 0.55 in the white matter to 0.98 in the cerebellum. Conclusion:11C-AS2471907 has a high fraction of specific binding in vivo in humans and reasonable within-day reproducibility of binding parameters.
Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Encéfalo/enzimología , Tomografía de Emisión de Positrones , Triazoles/farmacología , Adulto , Mapeo Encefálico , Radioisótopos de Carbono/análisis , Humanos , Cinética , Masculino , Persona de Mediana Edad , Radiofármacos/análisis , Estándares de Referencia , Reproducibilidad de los Resultados , Distribución Tisular , Triazoles/análisisRESUMEN
Kappa opioid receptor (KOR) antagonists are potential drug candidates for diseases such as treatment-refractory depression, anxiety, and addictive disorders. PET imaging radiotracers for KOR can be used in occupancy study to facilitate drug development, and to investigate the roles of KOR in health and diseases. We have previously developed two 11C-labeled antagonist radiotracers with high affinity and selectivity toward KOR. What is limiting their wide applications is the short half-life of 11C. Herein, we report the synthesis of a first 18F-labeled KOR antagonist radiotracer and the initial PET imaging study in a nonhuman primate.
Asunto(s)
Encéfalo/diagnóstico por imagen , Flúor/farmacocinética , Antagonistas de Narcóticos , Tomografía de Emisión de Positrones , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Animales , Benzamidas/síntesis química , Benzamidas/química , Benzamidas/farmacocinética , Encéfalo/efectos de los fármacos , Macaca mulatta , Antagonistas de Narcóticos/síntesis química , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/farmacocinética , Espectroscopía de Protones por Resonancia Magnética , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacocinéticaRESUMEN
Metabotropic glutamate receptor 2 (mGluR2) has been implicated in a variety of CNS disorders, including schizophrenia. Disclosed herein is the development of a new series of allosteric potentiators of mGluR2. Structure-activity relationship studies in conjunction with pharmacokinetic data led to the discovery of indole 5, which is active in an animal model for schizophrenia.
Asunto(s)
Acetofenonas/farmacología , Modelos Animales de Enfermedad , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Acetofenonas/química , Acetofenonas/farmacocinética , Regulación Alostérica/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Reactivos de Enlaces Cruzados/química , Humanos , Ketamina/farmacología , Estructura Molecular , Ratas , Esquizofrenia/inducido químicamente , Relación Estructura-ActividadRESUMEN
We have identified and synthesized a series of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to alpha 2 delta-1 subunit of voltage gated calcium channels. Structure-activity relationship studies directed toward improving the potency and physical properties of 2 lead to the discovery of 20 (IC(50)=15 nM) and (S)-22 (IC(50)=30 nM). A potent and selective radioligand, [(3)H]-(S)-22 was also synthesized to demonstrate that this ligand binds to the same site as gabapentin.
Asunto(s)
Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio/metabolismo , Ftalazinas/farmacología , Aminas/metabolismo , Analgésicos/síntesis química , Analgésicos/farmacología , Sitios de Unión , Bloqueadores de los Canales de Calcio/farmacología , Ácidos Ciclohexanocarboxílicos/metabolismo , Gabapentina , Humanos , Concentración 50 Inhibidora , Ligandos , Ftalazinas/síntesis química , Ensayo de Unión Radioligante , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/metabolismoRESUMEN
A series of N-acridin-9-yl-butane-1,4-diamines were found to be high-affinity ligands of the alpha(2)delta subunit of voltage gated calcium channels. The SAR studies of butane-1,4-diamine side chain resulted in the identification of compound 10 (IC(50)=9 nM), which is more potent than gabapentin (IC(50)=27 nM). Partial saturation of the acridine ring was also pursued and provided a compound with higher binding affinity than 1.