Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 10(12): e1004872, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25501822

RESUMEN

Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a "one-step" mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.


Asunto(s)
Citrobacter freundii/genética , Escherichia coli/genética , Evolución Molecular , Adaptación Biológica/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico/genética , Proteínas de Escherichia coli/genética , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica , Interacción Gen-Ambiente , Variación Genética , Humanos , Mutación , Fenotipo , Proteoma/genética , Proteoma/metabolismo , Proteínas Represoras/genética , Factor sigma/genética , Regulación hacia Arriba
2.
Microbiol Spectr ; 12(3): e0205023, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353557

RESUMEN

Cancer patients are at risk for severe coronavirus disease 2019 (COVID-19) outcomes due to impaired immune responses. However, the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is inadequately characterized in this population. We hypothesized that cancer vs non-cancer individuals would mount less robust humoral and/or cellular vaccine-induced immune SARS-CoV-2 responses. Receptor binding domain (RBD) and SARS-CoV-2 spike protein antibody levels and T-cell responses were assessed in immunocompetent individuals with no underlying disorders (n = 479) and immunocompromised individuals (n = 115). All 594 individuals were vaccinated and of varying COVID-19 statuses (i.e., not known to have been infected, previously infected, or "Long-COVID"). Among immunocompromised individuals, 59% (n = 68) had an underlying hematologic malignancy; of those, 46% (n = 31) of individuals received cancer treatment <30 days prior to study blood collection. Ninety-eight percentage (n = 469) of immunocompetent and 81% (n = 93) of immunocompromised individuals had elevated RBD antibody titers (>1,000 U/mL), and of these, 60% (n = 281) and 44% (n = 41), respectively, also had elevated T-cell responses. Composite T-cell responses were higher in individuals previously infected with SARS-CoV-2 or those diagnosed with Long-COVID compared to uninfected individuals. T-cell responses varied between immunocompetent vs carcinoma (n = 12) cohorts (P < 0.01) but not in immunocompetent vs hematologic malignancy cohorts. Most SARS-CoV-2 vaccinated individuals mounted robust cellular and/or humoral responses, though higher immunogenicity was observed among the immunocompetent compared to cancer populations. The study suggests B-cell targeted therapies suppress antibody responses, but not T-cell responses, to SARS-CoV-2 vaccination. Thus, vaccination continues to be an effective way to induce humoral and cellular immune responses as a likely key preventive measure against infection and/or subsequent more severe adverse outcomes. IMPORTANCE: The study was prompted by a desire to better assess the immune status of patients among our cancer host cohort, one of the largest in the New York metropolitan region. Hackensack Meridian Health is the largest healthcare system in New Jersey and cared for more than 75,000 coronavirus disease 2019 patients in its hospitals. The John Theurer Cancer Center sees more than 35,000 new cancer patients a year and performs more than 500 hematopoietic stem cell transplants. As a result, the work was undertaken to assess the effectiveness of vaccination in inducing humoral and cellular responses within this demographic.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Neoplasias , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunación , Inmunidad Celular , Anticuerpos Antivirales , Inmunidad Humoral
4.
J Clin Microbiol ; 47(4): 896-901, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19193843

RESUMEN

Enterococcus faecium has recently emerged as an important cause of nosocomial infections. We previously identified 15 predicted surface proteins with characteristics of MSCRAMMs and/or pili and demonstrated that their genes were frequently present in 30 clinical E. faecium isolates studied; one of these, acm, has been studied in further detail. To determine the prevalence of the other 14 genes among various E. faecium populations, we have now assessed 433 E. faecium isolates, including 264 isolates from human clinical infections, 69 isolates from stools of hospitalized patients, 70 isolates from stools of community volunteers, and 30 isolates from animal-related sources. A variable distribution of the 14 genes was detected, with their presence ranging from 51% to 98% of isolates. While 81% of clinical isolates carried 13 or 14 of the 14 genes tested, none of the community group isolates and only 13% of animal isolates carried 13 or 14 genes. The presence of these genes was most frequent in endocarditis isolates, with 11 genes present in all isolates, followed by isolates from other clinical sources. The number of genes significantly associated with clinical versus fecal or animal origin (P = 0.04 to <0.0001) varied from 10 to 13, depending on whether comparisons were made against individual clinical subgroups (endocarditis, blood, and other clinical isolates) or against all clinical isolates combined as one group. The strong association of these genes with clinical isolates raises the possibility that their preservation/acquisition has favored the adaptation of E. faecium to nosocomial environments and/or patients.


Asunto(s)
Adhesinas Bacterianas/genética , ADN Bacteriano/genética , Enterococcus faecium/genética , Fimbrias Bacterianas/genética , Genes Bacterianos , Infecciones por Bacterias Grampositivas/microbiología , Animales , Proteínas Bacterianas/genética , Enterococcus faecium/aislamiento & purificación , Heces/microbiología , Genotipo , Humanos , Factores de Virulencia/genética
5.
BMC Infect Dis ; 5: 14, 2005 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15774018

RESUMEN

BACKGROUND: Enterococci tend to be one of the leading causes of nosocomial infections, with E. faecalis and E. faecium accounting up to 90% of the clinical isolates. Nevertheless, the incidence of other species of enterococci from clinical sources shows an alarming increase with the properties of intrinsic resistance to several antibiotics including beta-lactams and glycopeptides. Thus proper identification of enterococci to species level is quintessential for management and prevention of these bacteria in any healthcare facility. Hence this work was undertaken to study the prevalence of unusual species of enterococci causing human infections, in a tertiary care hospital in South India. METHODS: The study was conducted in a tertiary care hospital in South India from July 2001 to June 2003. Isolates of enterococci were collected from various clinical specimens and speciated using extensive phenotypic and physiological tests. Antimicrobial susceptibility testing were performed and interpreted as per NCCLS guidelines. Whole cell protein (WCP) fingerprinting of enterococci were done for species validation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed computationally. RESULTS: Our study showed the prevalence of unusual (non-faecalis and non-faecium enterococci) and atypical (biochemical variant) species of enterococci as 19% (46 isolates) and 5% (12 isolates) respectively. The 7 unusual species (46 isolates) isolated and confirmed by phenotypic characterization includes: 15 E. gallinarum (6.2%), 10 E. avium (4.1%), 6 E. raffinosus (2.5%), 6 E. hirae (2.5%), 4 E. mundtii (1.7%), 3 E. casseliflavus-including the two atypical isolates (1.2%) and 2 E. durans (0.8%). The 12 atypical enterococcal species (5%) that showed aberrant sugar reactions in conventional phenotyping were confirmed as E. faecalis, E. faecium and E. casseliflavus respectively by WCP fingerprinting. The antimicrobial susceptibility testing depicted the emergence of high-level aminoglycoside and beta-lactam resistance among different species apart from intrinsic vancomycin resistance by some species, while all the species tested were susceptible for linezolid and teicoplanin. CONCLUSION: Our study reveals the emergence of multi-drug resistance among unusual species of enterococci posing a serious therapeutic challenge. Precise identification of enterococci to species level enables us to access the species-specific antimicrobial resistance characteristics, apart from knowing the epidemiological pattern and their clinical significance in human infections.


Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Enterococcus/clasificación , Enterococcus/aislamiento & purificación , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Antibacterianos/farmacología , Enfermedades Transmisibles Emergentes/epidemiología , Farmacorresistencia Bacteriana Múltiple , Enterococcus/efectos de los fármacos , Enterococcus/genética , Humanos , India/epidemiología , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia , Especificidad de la Especie
6.
Virulence ; 1(4): 236-46, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20676385

RESUMEN

We recently identified 15 genes encoding putative surface proteins with features of MSCRAMMs and/or pili in the Enterococcus faecium TX0016 (DO) genome, including four predicted pilus-encoding gene clusters; we also demonstrated that one of these, ebpABC(fm), is transcribed as an operon, that its putative major pilus subunit, EbpC(fm) (also called pilB), is polymerized into high molecular weight complexes, and that it is enriched among clinical E. faecium isolates. Here, we created a deletion of the ebpABC(fm) operon in an endocarditis-derived E. faecium strain (TX82) and showed, by a combination of whole-cell ELISA, flow cytometry, immunoblot and immunogold electron microscopy, that this deletion abolished EbpC(fm) expression and eliminated EbpC(fm)-containing pili from the cell surface. However, transcription of the downstream sortase, bps(fm), was not affected. Importantly, the ebpABC(fm) deletion resulted in significantly reduced biofilm formation (p < 0.0001) and initial adherence (p < 0.0001) versus the wild-type; both were restored by complementing ebpABC(fm) in trans, which also restored cell surface expression of EbpC(fm) and pilus production. Furthermore, the deletion mutant was significantly attenuated in two independent mixed infection mouse urinary tract experiments, i.e., outnumbered by the wild-type in kidneys (p = 0.0003 and < 0.0001, respectively) and urinary bladders (p = 0.0003 and = 0.002). In conclusion, we have shown that the ebpABC(fm) locus encodes pili on the E. faecium TX82 cell surface and provide the first evidence that pili of this emerging pathogen are important for its ability to form biofilm and to cause infection in an ascending UTI model.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Enterococcus faecium/patogenicidad , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Operón , Infecciones Urinarias/microbiología , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Enterococcus faecium/genética , Enterococcus faecium/crecimiento & desarrollo , Proteínas Fimbrias/genética , Fimbrias Bacterianas/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Riñón/microbiología , Ratones , Familia de Multigenes , Virulencia
7.
Microbiology (Reading) ; 154(Pt 10): 3199-3211, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18832325

RESUMEN

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.


Asunto(s)
Adhesinas Bacterianas/genética , Colágeno/metabolismo , Enterococcus faecium/genética , Fimbrias Bacterianas/genética , Genoma Bacteriano , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Dicroismo Circular , Colágeno/genética , ADN Bacteriano/genética , Enterococcus faecium/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fimbrias Bacterianas/metabolismo , Citometría de Flujo , Genes Bacterianos , Familia de Multigenes , Fenotipo , Unión Proteica , Conformación Proteica , ARN Bacteriano/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato
8.
Genome Biol ; 9(7): R110, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18611278

RESUMEN

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.


Asunto(s)
Enterococcus faecalis/genética , Genoma Bacteriano , Animales , Antibacterianos , Proteínas Bacterianas/genética , Biopelículas , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/patogenicidad , Ácido Fusídico/farmacología , Variación Genética , Genómica , Secuencias Repetitivas Esparcidas , Proteínas de la Membrana/genética , Ratones , Operón , Secuencias Repetitivas de Ácidos Nucleicos , Rifampin/farmacología , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA