Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 319, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081703

RESUMEN

BACKGROUND: Phylogenetically closely related strains of maternally inherited endosymbiotic bacteria are often found in phylogenetically divergent, and geographically distant insect host species. The interspecies transfer of the symbiont Wolbachia has been thought to have occurred repeatedly, facilitating its observed global pandemic. Few ecological interactions have been proposed as potential routes for the horizontal transfer of Wolbachia within natural insect communities. These routes are however likely to act only at the local scale, but how they may support the global distribution of some Wolbachia strains remains unclear. RESULTS: Here, we characterize the Wolbachia diversity in butterflies from the tropical forest regions of central Africa to discuss transfer at both local and global scales. We show that numerous species from both the Mylothris (family Pieridae) and Bicyclus (family Nymphalidae) butterfly genera are infected with similar Wolbachia strains, despite only minor interclade contacts across the life cycles of the species within their partially overlapping ecological niches. The phylogenetic distance and differences in resource use between these genera rule out the role of ancestry, hybridization, and shared host-plants in the interspecies transfer of the symbiont. Furthermore, we could not identify any shared ecological factors to explain the presence of the strains in other arthropod species from other habitats, or even ecoregions. CONCLUSION: Only the systematic surveys of the Wolbachia strains from entire species communities may offer the material currently lacking for understanding how Wolbachia may transfer between highly different and unrelated hosts, as well as across environmental scales.


Asunto(s)
Transferencia de Gen Horizontal , Lepidópteros/fisiología , Simbiosis , Wolbachia/fisiología , África , Animales , Biodiversidad , Genoma Bacteriano , Geografía , Lepidópteros/genética , Filogenia , Wolbachia/genética
2.
Sci Adv ; 8(10): eabm2387, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263124

RESUMEN

Animal coloration is often expressed in periodic patterns that can arise from differential cell migration, yet how these processes are regulated remains elusive. We show that a female-limited polymorphism in dorsal patterning (diamond/chevron) in the brown anole is controlled by a single Mendelian locus. This locus contains the gene CCDC170 that is adjacent to, and coexpressed with, the Estrogen receptor-1 gene, explaining why the polymorphism is female limited. CCDC170 is an organizer of the Golgi-microtubule network underlying a cell's ability to migrate, and the two segregating alleles encode structurally different proteins. Our agent-based modeling of skin development demonstrates that, in principle, a change in cell migratory behaviors is sufficient to switch between the two morphs. These results suggest that CCDC170 might have been co-opted as a switch between color patterning morphs, likely by modulating cell migratory behaviors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA