Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rev ; 121(9): 5240-5288, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33201677

RESUMEN

The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Sistema Biliar/metabolismo , Hígado/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Humanos , Simulación de Dinámica Molecular , Relación Estructura-Actividad
2.
J Lipid Res ; 61(12): 1605-1616, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32917728

RESUMEN

ABCB4/MDR3 is located in the canalicular membrane of hepatocytes and translocates PC-lipids from the cytoplasmic to the extracellular leaflet. ABCB4 is an ATP-dependent transporter that reduces the harsh detergent effect of the bile salts by counteracting self-digestion. To do so, ABCB4 provides PC lipids for extraction into bile. PC lipids account for 40% of the entire pool of lipids in the canalicular membrane with an unknown distribution over both leaflets. Extracted PC lipids end up in so-called mixed micelles. Mixed micelles are composed of phospholipids, bile salts, and cholesterol. Ninety to ninety-five percent of the phospholipids are members of the PC family, but only a subset of mainly 16.0-18:1 PC and 16:0-18:2 PC variants are present. To elucidate whether ABCB4 is the key discriminator in this enrichment of specific PC lipids, we used in vitro studies to identify crucial determinants in substrate selection. We demonstrate that PC-lipid moieties alone are insufficient for stimulating ABCB4 ATPase activity, and that at least two acyl chains and the backbone itself are required for a productive interaction. The nature of the fatty acids, like length or saturation has a quantitative impact on the ATPase activity. Our data demonstrate a two-step enrichment and protective function of ABCB4 to mitigate the harsh detergent effect of the bile salts, because ABCB4 can translocate more than just the PC-lipid variants found in bile.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Ácidos y Sales Biliares/farmacología , Fosfatidilcolinas/metabolismo , Colesterol/metabolismo , Células HEK293 , Humanos
3.
Biochem J ; 476(21): 3161-3182, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689351

RESUMEN

Guanylate-binding proteins (GBPs) constitute a family of interferon-inducible guanosine triphosphatases (GTPases) that are key players in host defense against intracellular pathogens ranging from protozoa to bacteria and viruses. So far, human GBP1 and GBP5 as well as murine GBP2 (mGBP2) have been biochemically characterized in detail. Here, with murine GBP7 (mGBP7), a GBP family member with an unconventional and elongated C-terminus is analyzed. The present study demonstrates that mGBP7 exhibits a concentration-dependent GTPase activity and an apparent GTP turnover number of 20 min-1. In addition, fluorescence spectroscopy analyses reveal that mGBP7 binds GTP with high affinity (KD = 0.22 µM) and GTPase activity assays indicate that mGBP7 hydrolyzes GTP to GDP and GMP. The mGBP7 GTPase activity is inhibited by incubation with γ-phosphate analogs and a K51A mutation interfering with GTP binding. SEC-MALS analyses give evidence that mGBP7 forms transient dimers and that this oligomerization pattern is not influenced by the presence of nucleotides. Moreover, a structural model for mGBP7 is provided by homology modeling, which shows that the GTPase possesses an elongated C-terminal (CT) tail compared with the CaaX motif-containing mGBP2 and human GBP1. Molecular dynamics simulations indicate that this tail has transmembrane characteristics and, interestingly, confocal microscopy analyses reveal that the CT tail is required for recruitment of mGBP7 to the parasitophorous vacuole of Toxoplasma gondii.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Ratones , Simulación de Dinámica Molecular , Dominios Proteicos , Toxoplasma/fisiología , Toxoplasmosis/enzimología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
4.
Biol Chem ; 400(10): 1245-1259, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30730833

RESUMEN

Several ABC transporters of the human liver are responsible for the secretion of bile salts, lipids and cholesterol. Their interplay protects the biliary tree from the harsh detergent activity of bile salts. Among these transporters, ABCB4 is essential for the translocation of phosphatidylcholine (PC) lipids from the inner to the outer leaflet of the canalicular membrane of hepatocytes. ABCB4 deficiency can result in altered PC to bile salt ratios, which led to intrahepatic cholestasis of pregnancy, low phospholipid associated cholelithiasis, drug induced liver injury or even progressive familial intrahepatic cholestasis type 3. Although PC lipids only account for 30-40% of the lipids in the canalicular membrane, 95% of all phospholipids in bile are PC lipids. We discuss this discrepancy in the light of PC synthesis and bile salts favoring certain lipids. Nevertheless, the in vivo extraction of PC lipids from the outer leaflet of the canalicular membrane by bile salts should be considered as a separate step in bile formation. Therefore, methods to characterize disease causing ABCB4 mutations should be considered carefully, but such an analysis represents a crucial point in understanding the currently unknown transport mechanism of this ABC transporter.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Transporte Biológico , Colestasis Intrahepática/metabolismo , Hepatocitos/metabolismo , Humanos , Mutación , Fosfatidilcolinas/metabolismo , Relación Estructura-Actividad
5.
Structure ; 29(10): 1144-1155.e5, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107287

RESUMEN

ABCB4 is described as an ATP-binding cassette (ABC) transporter that primarily transports lipids of the phosphatidylcholine (PC) family but is also capable of translocating a subset of typical multidrug-resistance-associated drugs. The high degree of amino acid identity of 76% for ABCB4 and ABCB1, which is a prototype multidrug-resistance-mediating protein, results in ABCB4's second subset of substrates, which overlap with ABCB1's substrates. This often leads to incomplete annotations of ABCB4, in which it was described as exclusively PC-lipid specific. When the hydrophilic amino acids from ABCB4 are changed to the analogous but hydrophobic ones from ABCB1, the stimulation of ATPase activity by 1,2-dioleoyl-sn-glycero-3-phosphocholine, as a prime example of PC lipids, is strongly diminished, whereas the modulation capability of ABCB1 substrates remains unchanged. This indicates two distinct and autonomous substrate binding sites in ABCB4.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Fosfatidilcolinas/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA