Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Lab Med ; 8(3): 504-513, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36759930

RESUMEN

BACKGROUND: Acute liver failure (ALF) is a devastating condition with high mortality. Currently, liver transplantation is the only life-saving treatment, but the decision to transplant is difficult due to the rapid progression of ALF and persistent shortage of donor organs. Biomarkers that predict death better than current prognostics could help. To our surprise, proteomics recently revealed that lactate dehydrogenase (LDH) is prognostic in ALF by itself and in a novel form of the model for end-stage liver disease (MELD) score called the MELD-LDH. The purpose of this study was to confirm our proteomics results in a larger population. METHODS: We reviewed laboratory data from 238 patients admitted to the University of Arkansas for Medical Sciences Medical Center with a diagnosis of ALF and biochemical evidence of acute liver failure over a 12-year period, as well as subset of 170 patients with encephalopathy. RESULTS: LDH was strikingly elevated in the nonsurvivors at the time of peak injury. Receiver operating characteristic (ROC) curve analyses revealed that LDH by itself could discriminate between survivors and nonsurvivors on the first day of hospitalization, although not as well as the MELD and MELD-LDH scores that performed alike. Importantly, however, LDH by itself performed similarly to the MELD at the time of peak injury and the MELD-LDH score moderately outperformed both. The MELD-LDH score also had greater sensitivity and negative predictive value than the MELD and the King's College Criteria. CONCLUSIONS: The results support our prior finding that LDH and the MELD-LDH score predict death and therefore transplant need in ALF patients.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Fallo Hepático Agudo , Humanos , Pronóstico , Índice de Severidad de la Enfermedad , Fallo Hepático Agudo/diagnóstico , Fallo Hepático Agudo/terapia , Medición de Riesgo
2.
Mol Metab ; 77: 101808, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716594

RESUMEN

OBJECTIVE: Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS: We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS: We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS: Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Ratones , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Acetaminofén/efectos adversos , Acetaminofén/metabolismo , Ácido Pirúvico/farmacología , Alanina Transaminasa , Estrés Oxidativo , Oxidación-Reducción , Glutatión/metabolismo , Alanina/farmacología
3.
ACS Omega ; 6(31): 20611-20618, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34396006

RESUMEN

Membrane proteins are vital for biological function and are complex to study. Even in model peptide-lipid systems, the combined influence or interaction of pairs of chemical groups still is not well understood. Disordered proteins, whether in solution or near lipid membranes, are an emerging paradigm for the initiation and control of biological function. The disorder can involve molecular orientation as well as molecular folding. This paper reports an astonishing induction of disorder when one Glu residue is introduced into a highly stable 23-residue transmembrane helix. The parent helix is anchored by a single Arg residue, tilted at a well-defined angle with respect to the DOPC bilayer normal and undergoes rapid cone precession. When Glu is introduced two residues away from Arg, with 200° (or 160°) radial separation, the helix properties change radically to exhibit a multiplicity of three or more disordered states. The helix characteristics have been monitored by deuterium (2H) NMR spectroscopy as functions of the pH and lipid bilayer composition. The disordered multistate behavior of the (Glu, Arg)-containing helix varies with the lipid bilayer thickness and pH. The results highlight a fundamental induction of protein multistate properties by a single Glu residue in a lipid membrane environment.

4.
ACS Omega ; 6(12): 8488-8494, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817510

RESUMEN

The ionization properties of protein side chains in lipid-bilayer membranes will differ from the canonical values of side chains exposed to an aqueous solution. While the propensities of positively charged side chains of His, Lys, and Arg to release a proton in lipid membranes have been rather well characterized, the propensity for a negatively charged Glu side chain to receive a proton and achieve the neutral state in a bilayer membrane has been less well characterized. Indeed, the ionization of the glutamic acid side chain has been predicted to depend on its depth of burial in a lipid membrane but has been difficult to verify experimentally. To address the issue, we incorporated an interfacial Glu residue at position 4 of a distinct 23-residue transmembrane helix and used 2H NMR to examine the helix properties as a function of pH. We observe that the helix tilt and azimuthal rotation vary little with pH, but the extent of helix unraveling near residues 3 and 4 changes as the Glu residue E4 titrates. Remarkably, the 2H quadrupolar splitting for the side chain of alanine A3 responds to pH with an apparent pK a of 4.8 in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 6.3 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), but is unchanged up to pH 8.0 in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in the presence of residue E4. With bilayers composed of alkali-stable ether-linked lipids, the side chain of A3 responds to pH with an apparent pK a of 11.0 in the ether analogue of DOPC. These results suggest that the depth dependence of Glu ionization in lipid-bilayer membranes may be steeper than previously predicted or envisioned.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA