Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 256, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454350

RESUMEN

BACKGROUND: Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS: We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS: Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas , Humanos , Recién Nacido , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Factores de Riesgo , Bases de Datos Genéticas
2.
Arterioscler Thromb Vasc Biol ; 43(2): 359-366, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36601961

RESUMEN

BACKGROUND: Observational studies identified elevated blood pressure (BP) as a strong risk factor for thoracic aortic dilation, and BP reduction is the primary medical intervention recommended to prevent progression of aortic aneurysms. However, although BP may impact aortic dilation, aortic size may also impact BP. The causal relationship between BP and thoracic aortic size has not been reliably established. METHODS: Genome-wide association studies summary statistics were obtained for BP and ascending thoracic aortic diameter (AscAoD). Causal effects of BP on AscAoD were estimated using 2-sample Mendelian randomization using a range of pleiotropy-robust methods. RESULTS: Genetically predicted increased systolic BP, diastolic BP, and mean arterial pressure all significantly associate with higher AscAoD (systolic BP: ß estimate, 0.0041 mm/mm Hg [95% CI, 0.0008-0.0074]; P=0.02, diastolic BP: ß estimate, 0.0272 mm/mm Hg [95% CI, 0.0224-0.0320]; P<0.001, and mean arterial pressure: ß estimate, 0.0168 mm/mm Hg [95% CI, 0.0130-0.0206]; P<0.001). Genetically predicted pulse pressure, meanwhile, had an inverse association with AscAoD (ß estimate, -0.0155 mm/mm Hg [95% CI, -0.0213 to -0.0096]; P<0.001). Multivariable Mendelian randomization analyses showed that genetically predicted increased mean arterial pressure and reduced pulse pressure were independently associated with AscAoD. Bidirectional Mendelian randomization demonstrated that genetically predicted AscAoD was inversely associated with pulse pressure (ß estimate, -2.0721 mm Hg/mm [95% CI, -3.1137 to -1.0306]; P<0.001) and systolic BP (ß estimate, -1.2878 mm Hg/mm [95% CI, -2.3533 to -0.2224]; P=0.02), while directly associated with diastolic BP (0.8203 mm Hg/mm [95% CI, 0.2735-1.3672]; P=0.004). CONCLUSIONS: BP likely contributes causally to ascending thoracic aortic dilation. Increased AscAoD likely contributes to lower systolic BP and pulse pressure, but not diastolic BP, consistent with the hemodynamic consequences of a reduced aortic diameter.


Asunto(s)
Hipertensión , Análisis de la Aleatorización Mendeliana , Humanos , Presión Sanguínea , Estudio de Asociación del Genoma Completo , Hipertensión/epidemiología , Hipertensión/genética , Hemodinámica
3.
EMBO Rep ; 22(11): e52389, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34569705

RESUMEN

The migratory cardiac neural crest cells (CNCCs) contribute greatly to cardiovascular development. A thorough understanding of the cell lineages, developmental chronology, and transcriptomic states of CNCC derivatives during normal development is essential for deciphering the pathogenesis of CNCC-associated congenital anomalies. Here, we perform single-cell transcriptomic sequencing of 34,131 CNCC-derived cells in mouse hearts covering eight developmental stages between E10.5 and P7. We report the presence of CNCC-derived mural cells that comprise pericytes and microvascular smooth muscle cells (mVSMCs). Furthermore, we identify the transition from the CNCC-derived pericytes to mVSMCs and the key regulators over the transition. In addition, our data support that many CNCC derivatives had already committed or differentiated to a specific lineage when migrating into the heart. We explore the spatial distribution of some critical CNCC-derived subpopulations with single-molecule fluorescence in situ hybridization. Finally, we computationally reconstruct the differentiation path and regulatory dynamics of CNCC derivatives. Our study provides novel insights into the cell lineages, developmental chronology, and regulatory dynamics of CNCC derivatives during development.


Asunto(s)
Corazón , Cresta Neural , Transcriptoma , Animales , Diferenciación Celular , Corazón/crecimiento & desarrollo , Hibridación Fluorescente in Situ , Ratones , Cresta Neural/citología , Análisis de la Célula Individual
4.
PLoS Genet ; 16(11): e1008802, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226994

RESUMEN

The clinical evaluation of a genetic syndrome relies upon recognition of a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. However, individuals displaying a single phenotype of a complex syndrome may not meet criteria for clinical diagnosis or genetic testing. Here, we present a phenome-wide association study (PheWAS) approach to systematically explore the phenotypic expressivity of common and rare alleles in genes associated with four well-described syndromic diseases (Alagille (AS), Marfan (MS), DiGeorge (DS), and Noonan (NS) syndromes) in the general population. Using human phenotype ontology (HPO) terms, we systematically mapped 60 phenotypes related to AS, MS, DS and NS in 337,198 unrelated white British from the UK Biobank (UKBB) based on their hospital admission records, self-administrated questionnaires, and physiological measurements. We performed logistic regression adjusting for age, sex, and the first 5 genetic principal components, for each phenotype and each variant in the target genes (JAG1, NOTCH2 FBN1, PTPN1 and RAS-opathy genes, and genes in the 22q11.2 locus) and performed a gene burden test. Overall, we observed multiple phenotype-genotype correlations, such as the association between variation in JAG1, FBN1, PTPN11 and SOS2 with diastolic and systolic blood pressure; and pleiotropy among multiple variants in syndromic genes. For example, rs11066309 in PTPN11 was significantly associated with a lower body mass index, an increased risk of hypothyroidism and a smaller size for gestational age, all in concordance with NS-related phenotypes. Similarly, rs589668 in FBN1 was associated with an increase in body height and blood pressure, and a reduced body fat percentage as observed in Marfan syndrome. Our findings suggest that the spectrum of associations of common and rare variants in genes involved in syndromic diseases can be extended to individual phenotypes within the general population.


Asunto(s)
Variación Biológica Poblacional/genética , Estudios de Asociación Genética/métodos , Estudio de Asociación del Genoma Completo/métodos , Síndrome de Alagille/genética , Alelos , Síndrome de DiGeorge/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Variación Genética/genética , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Noonan/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Reino Unido , Población Blanca/genética
5.
Proc Natl Acad Sci U S A ; 117(27): 15818-15826, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541024

RESUMEN

Atherosclerosis is the process underlying heart attack and stroke. Despite decades of research, its pathogenesis remains unclear. Dogma suggests that atherosclerotic plaques expand primarily via the accumulation of cholesterol and inflammatory cells. However, recent evidence suggests that a substantial portion of the plaque may arise from a subset of "dedifferentiated" vascular smooth muscle cells (SMCs) which proliferate in a clonal fashion. Herein we use multicolor lineage-tracing models to confirm that the mature SMC can give rise to a hyperproliferative cell which appears to promote inflammation via elaboration of complement-dependent anaphylatoxins. Despite being extensively opsonized with prophagocytic complement fragments, we find that this cell also escapes immune surveillance by neighboring macrophages, thereby exacerbating its relative survival advantage. Mechanistic studies indicate this phenomenon results from a generalized opsonin-sensing defect acquired by macrophages during polarization. This defect coincides with the noncanonical up-regulation of so-called don't eat me molecules on inflamed phagocytes, which reduces their capacity for programmed cell removal (PrCR). Knockdown or knockout of the key antiphagocytic molecule CD47 restores the ability of macrophages to sense and clear opsonized targets in vitro, allowing for potent and targeted suppression of clonal SMC expansion in the plaque in vivo. Because integrated clinical and genomic analyses indicate that similar pathways are active in humans with cardiovascular disease, these studies suggest that the clonally expanding SMC may represent a translational target for treating atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Clonación Molecular , Activación de Complemento , Miocitos del Músculo Liso/metabolismo , Fagocitosis/fisiología , Animales , Antígeno CD47/metabolismo , Linaje de la Célula , Proliferación Celular , Complemento C3/genética , Complemento C3/metabolismo , Femenino , Humanos , Inflamación , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/citología , Placa Aterosclerótica/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
6.
Am J Hum Genet ; 105(2): 373-383, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353025

RESUMEN

Copy-number variations (CNVs) represent a significant proportion of the genetic differences between individuals and many CNVs associate causally with syndromic disease and clinical outcomes. Here, we characterize the landscape of copy-number variation and their phenome-wide effects in a sample of 472,228 array-genotyped individuals from the UK Biobank. In addition to population-level selection effects against genic loci conferring high mortality, we describe genetic burden from potentially pathogenic and previously uncharacterized CNV loci across more than 3,000 quantitative and dichotomous traits, with separate analyses for common and rare classes of variation. Specifically, we highlight the effects of CNVs at two well-known syndromic loci 16p11.2 and 22q11.2, previously uncharacterized variation at 9p23, and several genic associations in the context of acute coronary artery disease and high body mass index. Our data constitute a deeply contextualized portrait of population-wide burden of copy-number variation, as well as a series of dosage-mediated genic associations across the medical phenome.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 9/genética , Enfermedad de la Arteria Coronaria/genética , Variaciones en el Número de Copia de ADN , Síndrome de DiGeorge/genética , Discapacidad Intelectual/genética , Fenómica , Polimorfismo de Nucleótido Simple , Bancos de Muestras Biológicas , Estudios de Casos y Controles , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Femenino , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Fenotipo , Reino Unido
7.
Circ Res ; 126(7): 811-821, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32078439

RESUMEN

RATIONALE: Transposition of the great arteries (TGA) is one of the most severe types of congenital heart diseases. Understanding the clinical characteristics and pathogenesis of TGA is, therefore, urgently needed for patient management of this severe disease. However, the clinical characteristics and genetic cause underlying TGA remain largely unexplored. OBJECTIVE: We sought to systematically examine the clinical characteristics and genetic cause for isolated nonsyndromic TGA. METHODS AND RESULTS: We recruited 249 patients with TGA (66 family trios) and performed whole-exome sequencing. The incidence of patent ductus arteriosus in dextro-TGA (52.7%) and dextrocardia/mesocardia in congenitally corrected TGA (32.8%) were significantly higher than that in other subtypes. A high prevalence of bicuspid pulmonic valve (9.6%) was observed in patients with TGA. Similar results were observed in a replication group of TGA (n=132). Through a series of bioinformatics filtering steps, we obtained 82 candidate genes harboring potentially damaging de novo, loss of function, compound heterozygous, or X-linked recessive variants. Established congenital heart disease-causing genes, such as FOXH1, were found among the list of candidate genes. A total of 19 ciliary genes harboring rare potentially damaging variants were also found; for example, DYNC2LI1 with a de novo putatively damaging variant. The enrichment of ciliary genes supports the roles of cilia in the pathogenesis of TGA. In total, 33% of the TGA probands had >1 candidate gene hit by putatively deleterious variants, suggesting that a portion of the TGA cases were probably affected by oligogenic or polygenic inheritance. CONCLUSIONS: The findings of clinical characteristic analyses have important implications for TGA patient stratification. The results of genetic analyses highlight the pathogenic role of ciliary genes and a complex genetic architecture underlying TGA.


Asunto(s)
Cilios/metabolismo , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense , Transposición de los Grandes Vasos/genética , Secuencia de Aminoácidos , Secuencia de Bases , Estudios de Casos y Controles , Dineínas Citoplasmáticas/genética , Femenino , Humanos , Masculino , Homología de Secuencia de Aminoácido , Secuenciación del Exoma/métodos
8.
Pediatr Cardiol ; 43(3): 616-623, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34714385

RESUMEN

Hypertrophic cardiomyopathy (HCM) has historically been diagnosed phenotypically. Through genetic testing, identification of a molecular diagnosis (MolDx) is increasingly common but the impact on pediatric patients is unknown. This was a retrospective study of next-generation sequencing data for 602 pediatric patients with a clinician-reported history of HCM. Diagnostic yield was stratified by gene and self-reported race/ethnicity. A MolDx of HCM was identified in 242 (40%) individuals. Sarcomeric genes were the highest yielding, but pathogenic and/or likely pathogenic (P/LP) variants in syndromic genes were found in 36% of individuals with a MolDx, often in patients without documented clinical suspicion for a genetic syndrome. Among all MolDx, 73% were in genes with established clinical management recommendations and 2.9% were in genes that conferred eligibility for clinical trial enrollment. Black patients were the least likely to receive a MolDx. In the current era, genetic testing can impact management of HCM, beyond diagnostics or prognostics, through disease-specific guidelines or clinical trial eligibility. Genetic testing frequently can help identify syndromes in patients for whom syndromes may not be suspected. These findings highlight the importance of pursuing broad genetic testing, independent of suspicion based on phenotype. Lower rates of MolDx in Black patients may contribute to health inequities. Further research is needed evaluating the genetics of HCM in underrepresented/underserved populations. Additionally, research related to the impact of genetic testing on clinical management of other diseases is warranted.


Asunto(s)
Cardiomiopatía Hipertrófica , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/terapia , Niño , Pruebas Genéticas , Humanos , Mutación , Fenotipo , Estudios Retrospectivos , Sarcómeros/genética
9.
Nucleic Acids Res ; 47(D1): D1018-D1027, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30476213

RESUMEN

The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Anomalías Congénitas/genética , Predisposición Genética a la Enfermedad/genética , Bases del Conocimiento , Enfermedades Raras/genética , Anomalías Congénitas/diagnóstico , Bases de Datos Genéticas , Variación Genética , Humanos , Internet , Fenotipo , Enfermedades Raras/diagnóstico , Secuenciación Completa del Genoma/métodos
10.
Genet Epidemiol ; 43(2): 215-226, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30511478

RESUMEN

Loss of function variants in NOTCH1 cause left ventricular outflow tract obstructive defects (LVOTO). However, the risk conferred by rare and noncoding variants in NOTCH1 for LVOTO remains largely uncharacterized. In a cohort of 49 families affected by hypoplastic left heart syndrome, a severe form of LVOTO, we discovered predicted loss of function NOTCH1 variants in 6% of individuals. Rare or low-frequency missense variants were found in 16% of families. To make a quantitative estimate of the genetic risk posed by variants in NOTCH1 for LVOTO, we studied associations of 400 coding and noncoding variants in NOTCH1 in 1,085 cases and 332,788 controls from the UK Biobank. Two rare intronic variants in strong linkage disequilibrium displayed significant association with risk for LVOTO amongst European-ancestry individuals. This result was replicated in an independent analysis of 210 cases and 68,762 controls of non-European and mixed ancestry. In conclusion, carrying rare predicted loss of function variants in NOTCH1 confer significant risk for LVOTO. In addition, the two intronic variants seem to be associated with an increased risk for these defects. Our approach demonstrates the utility of population-based data sets in quantifying the specific risk of individual variants for disease-related phenotypes.


Asunto(s)
Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Intrones/genética , Mutación con Pérdida de Función/genética , Mutación Missense/genética , Receptor Notch1/genética , Obstrucción del Flujo Ventricular Externo/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Linaje , Factores de Riesgo , Población Blanca/genética , Secuenciación del Exoma
11.
Circulation ; 139(16): 1889-1899, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30813762

RESUMEN

BACKGROUND: Although lower-complexity cardiac malformations constitute the majority of adult congenital heart disease (ACHD), the long-term risks of adverse cardiovascular events and relationship with conventional risk factors in this population are poorly understood. We aimed to quantify the risk of adverse cardiovascular events associated with lower-complexity ACHD that is unmeasured by conventional risk factors. METHODS: A multitiered classification algorithm was used to select individuals with lower-complexity ACHD and individuals without ACHD for comparison among >500 000 British adults in the UK Biobank. ACHD diagnoses were subclassified as isolated aortic valve and noncomplex defects. Time-to-event analyses were conducted for the primary end points of fatal or nonfatal acute coronary syndrome, ischemic stroke, heart failure, and atrial fibrillation and a secondary combined end point for major adverse cardiovascular events. Maximum follow-up time for the study period was 22 years with retrospectively and prospectively collected data from the UK Biobank. RESULTS: We identified 2006 individuals with lower-complexity ACHD and 497 983 unexposed individuals in the UK Biobank (median age at enrollment, 58 [interquartile range, 51-63] years). Of the ACHD-exposed group, 59% were male, 51% were current or former smokers, 30% were obese, and 69%, 41%, and 7% were diagnosed or treated for hypertension, hyperlipidemia, and diabetes mellitus, respectively. After adjustment for 12 measured cardiovascular risk factors, ACHD remained strongly associated with the primary end points, with hazard ratios ranging from 2.0 (95% CI, 1.5-2.8; P<0.001) for acute coronary syndrome to 13.0 (95% CI, 9.4-18.1; P<0.001) for heart failure. ACHD-exposed individuals with ≤2 cardiovascular risk factors had a 29% age-adjusted incidence rate of major adverse cardiovascular events, in contrast to 13% in individuals without ACHD with ≥5 risk factors. CONCLUSIONS: Individuals with lower-complexity ACHD had a higher burden of adverse cardiovascular events relative to the general population that was unaccounted for by conventional cardiovascular risk factors. These findings highlight the need for closer surveillance of patients with mild to moderate ACHD and further investigation into management and mechanisms of cardiovascular risk unique to this growing population of high-risk adults.


Asunto(s)
Síndrome Coronario Agudo/epidemiología , Cardiopatías Congénitas/epidemiología , Insuficiencia Cardíaca/epidemiología , Adulto , Algoritmos , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Estados Unidos/epidemiología
12.
Pediatr Transplant ; 24(1): e13643, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31891211

RESUMEN

PURPOSE: We sought to determine whether the presence of a systemic SA with potential complicating factors affects waitlist and post-HT outcomes in pediatric patients. METHODS: This is a single-center retrospective review of pediatric patients listed for HT between January 1, 2009, and July 1, 2018. Patients were selected based on the presence of any underlying syndromes, which included chromosomal anomalies, skeletal myopathies, connective tissue disorders, mitochondrial disease,and other systemic disorders. Waitlist and post-HT outcomes were compared to those without SA. RESULTS: A total of 243 patients were listed for HT, of which 21 (9%) patients had associated SA. Of those, 16 (76%) survived to transplant, 3 (14%) died while on the waitlist, 1 (5%) improved and was removed from the waitlist, and 1 (5%) patient is currently listed. Waitlist survival was not different between those with/without an associated syndrome (P = 1.0). Among those who survived to HT, there was no difference in listing days (70 vs 90, P = .8), survival to hospital discharge [14 (93%) vs 150 (95%), P = .6], post-HT intubation days (2 vs 2 days, P = .6), or post-HT hospital length of stay (18 vs 18 days, P = .8). Overall survival during the study period post-HT was not different between groups (P = .8). CONCLUSION: A SA was present in 9% of pediatric patients wait-listed for HT, but was not associated with an increased waitlist mortality or post-HT hospital morbidity or long-term survival. For several anomalies, HT is safe and feasible.


Asunto(s)
Trastornos de los Cromosomas/complicaciones , Enfermedades del Tejido Conjuntivo/complicaciones , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Enfermedades Mitocondriales/complicaciones , Listas de Espera/mortalidad , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Trastornos de los Cromosomas/epidemiología , Enfermedades del Tejido Conjuntivo/epidemiología , Femenino , Insuficiencia Cardíaca/mortalidad , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/epidemiología , Prevalencia , Estudios Retrospectivos , Análisis de Supervivencia , Síndrome
13.
Circulation ; 138(21): e653-e711, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30571578

RESUMEN

This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.


Asunto(s)
Cardiopatías Congénitas/diagnóstico , American Heart Association , Aneuploidia , Variaciones en el Número de Copia de ADN , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Variación Genética , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Humanos , Polimorfismo de Nucleótido Simple , Estados Unidos/epidemiología
14.
PLoS Genet ; 12(4): e1005963, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27058611

RESUMEN

Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.


Asunto(s)
Defectos de los Tabiques Cardíacos/genética , Animales , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Linaje
15.
Proc Natl Acad Sci U S A ; 113(41): 11555-11560, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681629

RESUMEN

Somatic mosaicism, the occurrence and propagation of genetic variation in cell lineages after fertilization, is increasingly recognized to play a causal role in a variety of human diseases. We investigated the case of life-threatening arrhythmia in a 10-day-old infant with long QT syndrome (LQTS). Rapid genome sequencing suggested a variant in the sodium channel NaV1.5 encoded by SCN5A, NM_000335:c.5284G > T predicting p.(V1762L), but read depth was insufficient to be diagnostic. Exome sequencing of the trio confirmed read ratios inconsistent with Mendelian inheritance only in the proband. Genotyping of single circulating leukocytes demonstrated the mutation in the genomes of 8% of patient cells, and RNA sequencing of cardiac tissue from the infant confirmed the expression of the mutant allele at mosaic ratios. Heterologous expression of the mutant channel revealed significantly delayed sodium current with a dominant negative effect. To investigate the mechanism by which mosaicism might cause arrhythmia, we built a finite element simulation model incorporating Purkinje fiber activation. This model confirmed the pathogenic consequences of cardiac cellular mosaicism and, under the presenting conditions of this case, recapitulated 2:1 AV block and arrhythmia. To investigate the extent to which mosaicism might explain undiagnosed arrhythmia, we studied 7,500 affected probands undergoing commercial gene-panel testing. Four individuals with pathogenic variants arising from early somatic mutation events were found. Here we establish cardiac mosaicism as a causal mechanism for LQTS and present methods by which the general phenomenon, likely to be relevant for all genetic diseases, can be detected through single-cell analysis and next-generation sequencing.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndrome de QT Prolongado/genética , Mosaicismo , Potenciales de Acción , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Secuencia de Bases , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Simulación por Computador , Difusión , Electrocardiografía , Frecuencia de los Genes/genética , Genes Dominantes , Sitios Genéticos , Técnicas de Genotipaje , Sistema de Conducción Cardíaco/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/diagnóstico por imagen , Síndrome de QT Prolongado/fisiopatología , Modelos Biológicos , Mutación/genética , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Análisis de la Célula Individual
16.
J Pediatr ; 195: 275-278, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29254757

RESUMEN

In a retrospective study of 19 171 mother-child dyads, elevated random plasma glucose values during early pregnancy were directly correlated with increased risk for congenital heart disease in offspring. Plasma glucose levels proximal to the period of cardiac development may represent a modifiable risk factor for congenital heart disease in expectant mothers without diabetes.


Asunto(s)
Glucemia/metabolismo , Cardiopatías Congénitas/etiología , Hiperglucemia/diagnóstico , Complicaciones del Embarazo/diagnóstico , Primer Trimestre del Embarazo/sangre , Adolescente , Adulto , Biomarcadores/sangre , Femenino , Humanos , Hiperglucemia/sangre , Recién Nacido , Embarazo , Complicaciones del Embarazo/sangre , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
17.
J Oral Maxillofac Surg ; 76(12): 2515-2517, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30193118

RESUMEN

PURPOSE: Before having impacted third molars removed, patients are frequently asked to view a brief video describing the operation and its benefits and risks. The purpose of this study was to determine whether such information reduces or increases patients' anxiety level. PATIENTS AND METHODS: In this prospective cohort study, 100 patients presenting for consultation regarding removal of their impacted third molars completed a form asking them to grade their anxiety level before and after viewing the informational video as calm, slightly anxious, moderately anxious, or very anxious. RESULTS: Thirty-one percent reported increased anxiety after viewing the video. Only 12% showed a decrease, and in 57%, there was no change (28% were still slightly, moderately, or very anxious). Scoring of the pre- and post-viewing anxiety levels showed a statistically significant increase in anxiety after viewing. CONCLUSIONS: Viewing the video increased or did not reduce the anxiety level in a significant number of patients. Therefore, it is important to complement this video with positive verbal and written reinforcement of such aspects as patient comfort, procedural safety, and adequate pain control.


Asunto(s)
Ansiedad/terapia , Consentimiento Informado/psicología , Tercer Molar/cirugía , Educación del Paciente como Asunto/métodos , Extracción Dental/psicología , Diente Impactado/cirugía , Grabación de Cinta de Video , Adolescente , Adulto , Ansiedad/diagnóstico , Ansiedad/etiología , Femenino , Humanos , Masculino , Relaciones Profesional-Paciente , Estudios Prospectivos , Diente Impactado/psicología , Resultado del Tratamiento , Adulto Joven
18.
PLoS Genet ; 11(10): e1005496, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26448358

RESUMEN

High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.


Asunto(s)
Arritmias Cardíacas/genética , Predisposición Genética a la Enfermedad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Análisis de Secuencia de ADN , Arritmias Cardíacas/patología , Secuencia de Bases , Mapeo Cromosómico , Variación Genética , Genoma Humano , Genotipo , Humanos , Fenotipo
19.
Circulation ; 133(23): 2243-53, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27166384

RESUMEN

BACKGROUND: Maternal diabetes mellitus is associated with an increased risk of offspring congenital heart defects (CHD); however, the causal mechanism is poorly understood. We further investigated this association in a Danish nationwide cohort. METHODS AND RESULTS: In a national cohort study, we identified 2 025 727 persons born from 1978 to 2011; among them were 7296 (0.36%) persons exposed to maternal pregestational diabetes mellitus. Pregestational diabetes mellitus was identified by using the National Patient Register and individual-level information on all prescriptions filled in Danish pharmacies. Persons with CHD (n=16 325) were assigned to embryologically related cardiac phenotypes. The CHD prevalence in the offspring of mothers with pregestational diabetes mellitus was 318 per 10 000 live births (n=232) in comparison with a baseline risk of 80 per 10 000; the adjusted relative risk for CHD was 4.00 (95% confidence interval, 3.51-4.53). The association was not modified by year of birth, maternal age at diabetes onset, or diabetes duration, and CHD risks associated with type 1 (insulin-dependent) and type 2 (insulin-independent) diabetes mellitus did not differ significantly. Persons born to women with previous acute diabetes complications had a higher CHD risk than those exposed to maternal diabetes mellitus without complications (relative risk, 7.62; 95% confidence interval, 5.23-10.6, and relative risk, 3.49; 95% confidence interval, 2.91-4.13, respectively; P=0.0004). All specific CHD phenotypes were associated with maternal pregestational diabetes mellitus (relative risk range, 2.74-13.8). CONCLUSIONS: The profoundly increased CHD risk conferred by maternal pregestational diabetes mellitus neither changed over time nor differed by diabetes subtype. The association with acute pregestational diabetes complications was particularly strong, suggesting a role for glucose in the causal pathway.


Asunto(s)
Diabetes Mellitus/epidemiología , Cardiopatías Congénitas/epidemiología , Embarazo en Diabéticas/epidemiología , Efectos Tardíos de la Exposición Prenatal , Adolescente , Adulto , Dinamarca/epidemiología , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiología , Femenino , Cardiopatías Congénitas/diagnóstico , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Embarazo , Embarazo en Diabéticas/diagnóstico , Embarazo en Diabéticas/tratamiento farmacológico , Prevalencia , Sistema de Registros , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Adulto Joven
20.
Curr Opin Pediatr ; 29(5): 513-519, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28786837

RESUMEN

PURPOSE OF REVIEW: Genome sequencing is now available as a clinical diagnostic test. There is a significant knowledge and translation gap for nongenetic specialists of the processes necessary to generate and interpret clinical genome sequencing. The purpose of this review is to provide a primer on contemporary clinical genome sequencing for nongenetic specialists describing the human genome project, current techniques and applications in genome sequencing, limitations of current technology, and techniques on the horizon. RECENT FINDINGS: As currently implemented, genome sequencing compares short pieces of an individual's genome with a reference sequence developed by the human genome project. Genome sequencing may be used for obtaining timely diagnostic information, cancer pharmacogenomics, or in clinical cases when previous genetic testing has not revealed a clear diagnosis. At present, the implementation of clinical genome sequencing is limited by the availability of clinicians qualified for interpretation, and current techniques in used clinical testing do not detect all types of genetic variation present in a single genome. SUMMARY: Clinicians considering a genetic diagnosis have wide array of testing choices which now includes genome sequencing. Although not a comprehensive test in its current form, genome sequencing offers more information than gene-panel or exome sequencing and has the potential to replace targeted single-gene or gene-panel testing in many clinical scenarios.


Asunto(s)
Pruebas Genéticas/métodos , Secuenciación Completa del Genoma , Proyecto Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA