Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(20): 205701, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809064

RESUMEN

We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400 GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars. The combination of high-rate, pressure-induced hardening and polymorphism yield an average inferred flow stress of ∼3.8 GPa at high pressure, a ∼250-fold increase, changing Pb from soft to extremely strong.

2.
Phys Rev Lett ; 114(6): 065502, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25723227

RESUMEN

A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 µm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.


Asunto(s)
Modelos Teóricos , Tantalio/química , Ensayo de Materiales/métodos , Metales/química , Tamaño de la Partícula
3.
Phys Rev Lett ; 110(11): 115501, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166552

RESUMEN

The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

4.
Rev Sci Instrum ; 92(4): 043712, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243490

RESUMEN

To study matter at extreme densities and pressures, we need mega laser facilities such as the National Ignition Facility as well as creative methods to make observations during timescales of a billionth of a second. To facilitate this, we developed a platform and diagnostic to characterize a new point-projection radiography configuration using two micro-wires irradiated by a short pulse laser system that provides a large field of view with up to 3.6 ns separation between images. We used tungsten-carbide solid spheres as reference objects and inferred characteristics of the back-lighter source using a forward-fitting algorithm. The resolution of the system is inferred to be 15 µm (using 12.5 µm diameter wires). The bremsstrahlung temperature of the source is 70-300 keV, depending on laser energy and coupling efficiency. By adding the images recorded on multiple stacked image plates, the signal-to-noise of the system is nearly doubled. The imaging characterization technique described here can be adapted to most point-projection platforms where the resolution, spectral contrast, and signal-to-noise are important.

5.
Phys Rev Lett ; 104(13): 135504, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20481894

RESUMEN

Experimental results showing significant reductions from classical in the Rayleigh-Taylor instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at approximately 1 Mbar peak pressures, while maintaining the sample in the solid state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the Rayleigh-Taylor instability.

7.
Rev Sci Instrum ; 87(7): 073706, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27475564

RESUMEN

A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 µm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX-6 (C20H30) aerogel are discussed in this manuscript.

8.
Phys Rev Lett ; 102(7): 075503, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19257686

RESUMEN

A new compression technique, which enables the study of solids into the TPa regime, is described and used to ramp (or quasi-isentropically) compress diamond to a peak pressure of 1400 GPa. Diamond stress versus density data are reported to 800 GPa and suggest that the diamond phase is stable and has significant material strength up to at least this stress level. Data presented here are the highest ramp compression pressures by more than a factor of 5 and the highest-pressure solid equation-of-state data ever reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA