Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 36(10): 1599-1613, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28698905

RESUMEN

KEY MESSAGE: Dynamic transcriptome profiling revealed excessive, yet ineffective, immune response to V. nonalfalfae infection in susceptible hop, global gene downregulation in shoots of resistant hop and only a few infection-associated genes in roots. Hop (Humulus lupulus L.) production is hampered by Verticillium wilt, a disease predominantly caused by the soil-borne fungus Verticillium nonalfalfae. Only a few hop cultivars exhibit resistance towards it and mechanisms of this resistance have not been discovered. In this study, we compared global transcriptional responses in roots and shoots of resistant and susceptible hop plants infected by a lethal strain of V. nonalfalfae. Time-series differential gene expression profiles between infected and mock inoculated plants were determined and subjected to network-based analysis of functional enrichment. In the resistant hop cultivar, a remarkably low number of genes were differentially expressed in roots in response to V. nonalfalfae infection, while the majority of differentially expressed genes were down-regulated in shoots. The most significantly affected genes were related to cutin biosynthesis, cell wall biogenesis, lateral root development and terpenoid biosynthesis. On the other hand, susceptible hop exhibited a strong defence response in shoots and roots, including increased expression of genes associated with plant responses, such as innate immunity, wounding, jasmonic acid pathway and chitinase activity. Strong induction of defence-associated genes in susceptible hop and a low number of infection-responsive genes in the roots of resistant hop are consistent with previous findings, confirming the pattern of excessive response of the susceptible cultivar, which ultimately fails to protect the plant from V. nonalfalfae. This research offers a multifaceted overview of transcriptional responses of susceptible and resistant hop cultivars to V. nonalfalfae infection and represents a valuable resource in the study of this plant-pathogen interaction.


Asunto(s)
Cannabaceae/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Cannabaceae/microbiología , Ontología de Genes , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Brotes de la Planta/genética , Brotes de la Planta/microbiología , Verticillium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA