Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 619(7969): 371-377, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380771

RESUMEN

Ferroptosis is evolving as a highly promising approach to combat difficult-to-treat tumour entities including therapy-refractory and dedifferentiating cancers1-3. Recently, ferroptosis suppressor protein-1 (FSP1), along with extramitochondrial ubiquinone or exogenous vitamin K and NAD(P)H/H+ as an electron donor, has been identified as the second ferroptosis-suppressing system, which efficiently prevents lipid peroxidation independently of the cyst(e)ine-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis4-6. To develop FSP1 inhibitors as next-generation therapeutic ferroptosis inducers, here we performed a small molecule library screen and identified the compound class of 3-phenylquinazolinones (represented by icFSP1) as potent FSP1 inhibitors. We show that icFSP1, unlike iFSP1, the first described on-target FSP1 inhibitor5, does not competitively inhibit FSP1 enzyme activity, but instead triggers subcellular relocalization of FSP1 from the membrane and FSP1 condensation before ferroptosis induction, in synergism with GPX4 inhibition. icFSP1-induced FSP1 condensates show droplet-like properties consistent with phase separation, an emerging and widespread mechanism to modulate biological activity7. N-terminal myristoylation, distinct amino acid residues and intrinsically disordered, low-complexity regions in FSP1 were identified to be essential for FSP1-dependent phase separation in cells and in vitro. We further demonstrate that icFSP1 impairs tumour growth and induces FSP1 condensates in tumours in vivo. Hence, our results suggest that icFSP1 exhibits a unique mechanism of action and synergizes with ferroptosis-inducing agents to potentiate the ferroptotic cell death response, thus providing a rationale for targeting FSP1-dependent phase separation as an efficient anti-cancer therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Ferroptosis , Proteínas Mitocondriales , Humanos , Aminoácidos/metabolismo , Cisteína/metabolismo , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , NAD/metabolismo , NADP/metabolismo , Neoplasias/tratamiento farmacológico , Quinazolinas/farmacología , Bibliotecas de Moléculas Pequeñas , Ubiquinona/metabolismo , Vitamina K/metabolismo , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo
2.
Nature ; 608(7924): 778-783, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922516

RESUMEN

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Asunto(s)
Ferroptosis , Vitamina K , Antídotos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ligasas de Carbono-Carbono/metabolismo , Coenzimas/metabolismo , Ferroptosis/efectos de los fármacos , Hidroquinonas/metabolismo , Hidroquinonas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Proteína de Unión al Calcio S100A4/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacología , Warfarina/efectos adversos
3.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579172

RESUMEN

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Asunto(s)
COVID-19 , Humanos , Ligandos , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Portadoras/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
4.
Nature ; 575(7784): 693-698, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634899

RESUMEN

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Ferroptosis/genética , Glutatión/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido/genética , Ratones , Proteínas Mitocondriales/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
5.
Clin Immunol ; 248: 109213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566913

RESUMEN

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.


Asunto(s)
Ferroptosis , Enfermedades Renales , Nefritis Lúpica , Humanos , Ratones , Animales , Hierro/metabolismo , Glomérulos Renales/metabolismo , Células Epiteliales/metabolismo
6.
J Am Chem Soc ; 144(32): 14706-14721, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921655

RESUMEN

The archetype inhibitors of ferroptosis, ferrostatin-1 and liproxstatin-1, were identified via high-throughput screening of compound libraries for cytoprotective activity. These compounds have been shown to inhibit ferroptosis by suppressing propagation of lipid peroxidation, the radical chain reaction that drives cell death. Herein, we present the first rational design and optimization of ferroptosis inhibitors targeting this mechanism of action. Engaging the most potent radical-trapping antioxidant (RTA) scaffold known (phenoxazine, PNX), and its less reactive chalcogen cousin (phenothiazine, PTZ), we explored structure-reactivity-potency relationships to elucidate the intrinsic and extrinsic limitations of this approach. The results delineate the roles of inherent RTA activity, H-bonding interactions with phospholipid headgroups, and lipid solubility in determining activity/potency. We show that modifications which increase inherent RTA activity beyond that of the parent compounds do not substantially improve RTA kinetics in phospholipids or potency in cells, while modifications that decrease intrinsic RTA activity lead to corresponding erosions to both. The apparent "plateau" of RTA activity in phospholipid bilayers (kinh ∼ 2 × 105 M-1 s-1) and cell potency (EC50 ∼ 4 nM) may be the result of diffusion-controlled reactivity between the RTA and lipid-peroxyl radicals and/or the potential limitations on RTA turnover/regeneration by endogenous reductants. The metabolic stability of selected derivatives was assessed to identify a candidate for in vivo experimentation as a proof-of-concept. This PNX-derivative demonstrated stability in mouse liver microsomes comparable to liproxstatin-1 and was successfully used to suppress acute renal failure in mice brought on by tissue-specific inactivation of the ferroptosis regulator GPX4.


Asunto(s)
Ferroptosis , Animales , Antioxidantes/farmacología , Muerte Celular , Peroxidación de Lípido , Ratones , Fosfolípidos
7.
Nat Chem Biol ; 20(7): 799-800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38321207
8.
Int J Cancer ; 147(11): 3224-3235, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818320

RESUMEN

The cystine/glutamate antiporter, system xc- , is essential for the efficient uptake of cystine into cells. Interest in the mechanisms of system xc- function soared with the recognition that system xc- presents the most upstream node of ferroptosis, a recently described form of regulated necrosis relevant for degenerative diseases and cancer. Since targeting system xc- hold the great potential to efficiently combat tumor growth and metastasis of certain tumors, we disrupted the substrate-specific subunit of system xc- , xCT (SLC7A11) in the highly metastatic mouse B16F10 melanoma cell line and assessed the impact on tumor growth and metastasis. Subcutaneous injection of tumor cells into the syngeneic B16F10 mouse melanoma model uncovered a marked decrease in the tumor-forming ability and growth of KO cells compared to control cell lines. Strikingly, the metastatic potential of KO cells was markedly reduced as shown in several in vivo models of experimental and spontaneous metastasis. Accordingly, survival rates of KO tumor-bearing mice were significantly prolonged in contrast to those transplanted with control cells. Analyzing the in vitro ability of KO and control B16F10 cells in terms of endothelial cell adhesion and spheroid formation revealed that xCT expression indeed plays an important role during metastasis. Hence, system xc- emerges to be essential for tumor metastasis in mice, thus qualifying as a highly attractive anticancer drug target, particularly in light of its dispensable role for normal life in mice.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Técnicas de Inactivación de Genes/métodos , Melanoma/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Tasa de Supervivencia
9.
Nat Chem Biol ; 13(1): 91-98, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842070

RESUMEN

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


Asunto(s)
Apoptosis , Coenzima A Ligasas/metabolismo , Glutatión Peroxidasa/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/deficiencia , Femenino , Glutatión Peroxidasa/deficiencia , Humanos , Hipoglucemiantes/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tiazolidinedionas/farmacología
10.
Nat Chem Biol ; 13(1): 81-90, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27842066

RESUMEN

Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.


Asunto(s)
Ácido Araquidónico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fosfolípidos/metabolismo , Animales , Ácido Araquidónico/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/deficiencia , Coenzima A Ligasas/metabolismo , Ácidos Grasos Insaturados/antagonistas & inhibidores , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Proc Natl Acad Sci U S A ; 113(7): 1877-82, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26839407

RESUMEN

A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Modelos Animales de Enfermedad , Imagen Multimodal , Nanotecnología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Femenino , Rayos Infrarrojos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resonancia por Plasmón de Superficie
12.
Proc Natl Acad Sci U S A ; 112(12): 3776-81, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25762070

RESUMEN

We performed combinatorial peptide library screening in vivo on a novel human prostate cancer xenograft that is androgen-independent and induces a robust osteoblastic reaction in bonelike matrix and soft tissue. We found two peptides, PKRGFQD and SNTRVAP, which were enriched in the tumors, targeted the cell surface of androgen-independent prostate cancer cells in vitro, and homed to androgen receptor-null prostate cancer in vivo. Purification of tumor homogenates by affinity chromatography on these peptides and subsequent mass spectrometry revealed a receptor for the peptide PKRGFQD, α-2-macroglobulin, and for SNTRVAP, 78-kDa glucose-regulated protein (GRP78). These results indicate that GRP78 and α-2-macroglobulin are highly active in osteoblastic, androgen-independent prostate cancer in vivo. These previously unidentified ligand-receptor systems should be considered for targeted drug development against human metastatic androgen-independent prostate cancer.


Asunto(s)
Neoplasias Óseas/secundario , Osteogénesis , Péptidos/química , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Animales , Línea Celular Tumoral , Cromatografía de Afinidad , Progresión de la Enfermedad , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones SCID , Nanotecnología , Trasplante de Neoplasias , Neoplasias de la Próstata Resistentes a la Castración/patología , Unión Proteica , Proteómica , Receptores Androgénicos/metabolismo , alfa-Macroglobulinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(8): 2521-6, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25659743

RESUMEN

Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.


Asunto(s)
Metástasis Linfática/patología , Vasos Linfáticos/patología , Melanoma/patología , Secuencia de Aminoácidos , Animales , Biopsia , Comunicación Celular/inmunología , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Linfático/patología , Humanos , Ligandos , Ratones Desnudos , Imitación Molecular , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Proteína Fosfatasa 2/metabolismo , Reproducibilidad de los Resultados , Neoplasias Cutáneas , Resultado del Tratamiento , Melanoma Cutáneo Maligno
14.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659936

RESUMEN

Iron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis1-3. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification1,4,5, small molecules can provide unparalleled spatiotemporal control of the chemistry at work6. Here, we show that the ferroptosis inhibitor liproxstatin-1 (Lip-1) exerts a protective activity by inactivating iron in lysosomes. Based on this, we designed the bifunctional compound fentomycin that targets phospholipids at the plasma membrane and activates iron in lysosomes upon endocytosis, promoting oxidative degradation of phospholipids and ferroptosis. Fentomycin effectively kills primary sarcoma and pancreatic ductal adenocarcinoma cells. It acts as a lipolysis-targeting chimera (LIPTAC), preferentially targeting iron-rich CD44high cell-subpopulations7,8 associated with the metastatic disease and drug resistance9,10. Furthermore, we demonstrate that fentomycin also depletes CD44high cells in vivo and reduces intranodal tumour growth in an immunocompetent murine model of breast cancer metastasis. These data demonstrate that lysosomal iron triggers ferroptosis and that lysosomal iron redox chemistry can be exploited for therapeutic benefits.

15.
Nat Struct Mol Biol ; 30(11): 1806-1815, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37957306

RESUMEN

Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis. This mutational analysis elucidates the FAD/NAD(P)H-binding site and proton-transfer function of FSP1, which emerged to be evolutionarily conserved among different NADH quinone reductases. Using random mutagenesis screens, we uncover the mechanism of action of next-generation FSP1 inhibitors. Our studies identify the binding pocket of the first FSP1 inhibitor, iFSP1, and introduce the first species-independent FSP1 inhibitor, targeting the NAD(P)H-binding pocket. Conclusively, our study provides new insights into the molecular functions of FSP1 and enables the rational design of FSP1 inhibitors targeting cancer cells.


Asunto(s)
Ferroptosis , Ferroptosis/genética , NAD , Mutación , Mutagénesis , Sitios de Unión , Protones
16.
Mol Metab ; 57: 101436, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999280

RESUMEN

OBJECTIVE: Ferroptosis continues to emerge as a novel modality of cell death with important therapeutic implications for a variety of diseases, most notably cancer and degenerative diseases. While susceptibility, initiation, and execution of ferroptosis have been linked to reprogramming of cellular lipid metabolism, imbalances in iron-redox homeostasis, and aberrant mitochondrial respiration, the detailed mechanisms of ferroptosis are still insufficiently well understood. METHODS AND RESULTS: Here we show that diminished proteasome function is a new mechanistic feature of ferroptosis. The transcription factor nuclear factor erythroid-2, like-1 (NFE2L1) protects from ferroptosis by sustaining proteasomal activity. In cellular systems, loss of NFE2L1 reduced cellular viability after the induction of both chemically and genetically induced ferroptosis, which was linked to the regulation of proteasomal activity under these conditions. Importantly, this was reproduced in a Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) patient-derived cell line carrying mutated glutathione peroxidase-4 (GPX4), a critical regulator of ferroptosis. Also, reduced proteasomal activity was associated with ferroptosis in Gpx4-deficient mice. In a mouse model for genetic Nfe2l1 deficiency, we observed brown adipose tissue (BAT) involution, hyperubiquitination of ferroptosis regulators, including the GPX4 pathway, and other hallmarks of ferroptosis. CONCLUSION: Our data highlight the relevance of the NFE2L1-proteasome pathway in ferroptosis. Manipulation of NFE2L1 activity might enhance ferroptosis-inducing cancer therapies as well as protect from aberrant ferroptosis in neurodegeneration, general metabolism, and beyond.


Asunto(s)
Ferroptosis , Factor 1 Relacionado con NF-E2 , Animales , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Complejo de la Endopetidasa Proteasomal/metabolismo
17.
Trends Mol Med ; 27(2): 113-122, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32958404

RESUMEN

Attaining control over life and death decisions facilitates the identification of new therapeutic strategies for diseases affected by early cell loss or resistance to cell death. In this context, ferroptosis, a prevailing form of non-apoptotic cell death marked by the iron-dependent oxidative destruction of lipid bilayers and metabolic aberrations, has attracted overwhelming interest among basic researchers and clinicians due to its relevance for a number of degenerative diseases, such as neurodegeneration, ischemia/reperfusion injury (IRI), and organ failure, as well as therapy-resistant tumors. As the ferroptotic death pathway offers various druggable nodes, it is anticipated that the preclinical and clinical development of ferroptosis modulators will unleash unprecedented opportunities for the treatment of as-yet-incurable diseases.


Asunto(s)
Descubrimiento de Drogas , Ferroptosis/efectos de los fármacos , Terapia Molecular Dirigida , Animales , Estudios Clínicos como Asunto , Desarrollo de Medicamentos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Humanos , Hierro/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
18.
Cell Death Dis ; 12(7): 698, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257282

RESUMEN

Sorafenib, a protein kinase inhibitor approved for the treatment of hepatocellular carcinoma and advanced renal cell carcinoma, has been repeatedly reported to induce ferroptosis by possibly involving inhibition of the cystine/glutamate antiporter, known as system xc-. Using a combination of well-defined genetically engineered tumor cell lines and canonical small molecule ferroptosis inhibitors, we now provide unequivocal evidence that sorafenib does not induce ferroptosis in a series of tumor cell lines unlike the cognate system xc- inhibitors sulfasalazine and erastin. We further show that only a subset of tumor cells dies by ferroptosis upon sulfasalazine and erastin treatment, implying that certain cell lines appear to be resistant to system xc- inhibition, while others undergo ferroptosis-independent cell death. From these findings, we conclude that sorafenib does not qualify as a bona fide ferroptosis inducer and that ferroptosis induced by system xc- inhibitors can only be achieved in a fraction of tumor cell lines despite robust expression of SLC7A11, the substrate-specific subunit of system xc-.


Asunto(s)
Antineoplásicos/farmacología , Ferroptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Células HEK293 , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Piperazinas/farmacología , Sulfasalazina/farmacología
19.
Nat Commun ; 12(1): 4402, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285231

RESUMEN

Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4cys/-) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis. Given the unmet medical need to clinically inhibit AKI, we generated a combined small molecule inhibitor (Nec-1f) that simultaneously targets receptor interacting protein kinase 1 (RIPK1) and ferroptosis in cell lines, in freshly isolated primary kidney tubules and in mouse models of cardiac transplantation and of AKI and improved survival in models of ischemia-reperfusion injury. Based on genetic and pharmacological evidence, we conclude that GPX4 dysfunction hypersensitizes mice to ATN during AKI. Additionally, we introduce Nec-1f, a solid inhibitor of RIPK1 and weak inhibitor of ferroptosis.


Asunto(s)
Lesión Renal Aguda/patología , Ferroptosis/fisiología , Túbulos Renales/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cisplatino/administración & dosificación , Cisplatino/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales , Femenino , Ferroptosis/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HT29 , Trasplante de Corazón/efectos adversos , Humanos , Imidazoles/química , Imidazoles/farmacología , Imidazoles/uso terapéutico , Indoles/química , Indoles/farmacología , Indoles/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Microsomas Hepáticos , Proteínas Mitocondriales/metabolismo , Células 3T3 NIH , Necrosis/tratamiento farmacológico , Necrosis/etiología , Necrosis/patología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Cultivo Primario de Células , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/etiología
20.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34060472

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive tumor with limited treatment options and poor prognosis. We applied the in vivo phage display technology to isolate peptides homing to the immunosuppressive cellular microenvironment of TNBC as a strategy for non-malignant target discovery. We identified a cyclic peptide (CSSTRESAC) that specifically binds to a vitamin D receptor, protein disulfide-isomerase A3 (PDIA3) expressed on the cell surface of tumor-associated macrophages (TAM), and targets breast cancer in syngeneic TNBC, non-TNBC xenograft, and transgenic mouse models. Systemic administration of CSSTRESAC to TNBC-bearing mice shifted the cytokine profile toward an antitumor immune response and delayed tumor growth. Moreover, CSSTRESAC enabled ligand-directed theranostic delivery to tumors and a mathematical model confirmed our experimental findings. Finally, in silico analysis showed PDIA3-expressing TAM in TNBC patients. This work uncovers a functional interplay between a cell surface vitamin D receptor in TAM and antitumor immune response that could be therapeutically exploited.


Asunto(s)
Antineoplásicos/farmacología , Oligopéptidos/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Macrófagos Asociados a Tumores/efectos de los fármacos , Proteína de Unión a Vitamina D/metabolismo , Animales , Línea Celular Tumoral , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Proteína Disulfuro Isomerasas/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Proteína de Unión a Vitamina D/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA