Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010619

RESUMEN

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Invenciones , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Solanum lycopersicum/citología , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Especificidad de la Especie , Factores de Transcripción/metabolismo , Xilema/genética
3.
Plant Cell ; 36(7): 2512-2530, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38635902

RESUMEN

Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.


Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Hordeum , Semillas , Transcriptoma , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transcriptoma/genética , Endospermo/genética , Endospermo/metabolismo , Endospermo/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética , Histonas/metabolismo , Histonas/genética
4.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36660928

RESUMEN

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
5.
Nucleic Acids Res ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441075

RESUMEN

The Bio-Analytic Resource for Plant Biology ('the BAR', at https://bar.utoronto.ca) is celebrating its 20th year in operation in 2025. The BAR encompasses and provides visualization tools for large 'omics data sets from plants. The BAR covers data from Arabidopsis, tomato, wheat, barley and 29 other plant species (with data for 2 others to be released soon). These data include nucleotide and protein sequence data, gene expression data, protein-protein and protein-DNA interactions, protein structures, subcellular localizations, and polymorphisms. The data are stored in more than 200 relational databases holding 186 GB of data and are presented to the researchers via web apps. These web apps provide data analysis and visualization tools. Some of the most popular tools are eFP ('electronic fluorescent pictograph') Browsers, ePlants and ThaleMine (an Arabidopsis-specific instance of InterMine). The BAR was designated a Global Core Biodata Resource in 2023. Like other GCBRs, the BAR has excellent operational stability, provides access without login requirement, and provides an API for researchers to be able to access BAR data programmatically. We present in this update a new overarching search tool called Gaia that permits easy access to all BAR data, powered by machine learning and artificial intelligence.

6.
Plant J ; 114(3): 463-481, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880270

RESUMEN

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Asunto(s)
Brachypodium , Brachypodium/metabolismo , Cromatografía Liquida , Teoría de la Información , Cobre/metabolismo , Espectrometría de Masas en Tándem , Metabolómica/métodos , Metaboloma
7.
Plant J ; 114(1): 209-224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710629

RESUMEN

Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiosis/genética , ARN Mensajero/genética , ARN no Traducido/genética
8.
Plant Physiol ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088205

RESUMEN

Angiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis. For these reasons, they have become the object of study for floral and fruit development. However, due to the complexity of the gynoecium, specific spatio-temporal tissue expression patterns are still scarce. In this study, we used precise laser-assisted microdissection and high-throughput RNA sequencing to describe the transcriptional profiles of the medial and lateral domain tissues of the Arabidopsis gynoecium. We provide evidence that the method used is reliable and that, in addition to corroborating gene expression patterns of previously reported regulators of these tissues, we found genes whose expression dynamics point to being involved in cytokinin and auxin homeostasis and in cell cycle progression. Furthermore, based on differential gene expression analyses, we functionally characterized several genes and found that they are involved in gynoecium development. This resource is available via the Arabidopsis eFP browser and will serve the community in future studies on developmental and reproductive biology.

9.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200899

RESUMEN

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Asunto(s)
Biología Computacional , Células Vegetales , Animales , Humanos , Ratones , Plantas/genética
10.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221855

RESUMEN

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Asunto(s)
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiología , Empalme Alternativo/genética , Madera , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
11.
Plant Cell ; 33(4): 832-845, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793861

RESUMEN

Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Bases de Datos Genéticas , Epigenómica/métodos , Empalme del ARN , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos
12.
Nature ; 561(7722): E8, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29973716

RESUMEN

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

13.
Nature ; 553(7688): 342-346, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29320478

RESUMEN

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Leucina/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Arabidopsis/microbiología , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
14.
Plant Cell ; 32(4): 853-870, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988262

RESUMEN

Selaginella moellendorffii is a representative of the lycophyte lineage that is studied to understand the evolution of land plant traits such as the vasculature, leaves, stems, roots, and secondary metabolism. However, only a few studies have investigated the expression and transcriptional coordination of Selaginella genes, precluding us from understanding the evolution of the transcriptional programs behind these traits. We present a gene expression atlas comprising all major organs, tissue types, and the diurnal gene expression profiles for S. moellendorffii We show that the transcriptional gene module responsible for the biosynthesis of lignocellulose evolved in the ancestor of vascular plants and pinpoint the duplication and subfunctionalization events that generated multiple gene modules involved in the biosynthesis of various cell wall types. We demonstrate how secondary metabolism is transcriptionally coordinated and integrated with other cellular pathways. Finally, we identify root-specific genes and show that the evolution of roots did not coincide with an increased appearance of gene families, suggesting that the development of new organs does not coincide with increased fixation of new gene functions. Our updated database at conekt.plant.tools represents a valuable resource for studying the evolution of genes, gene families, transcriptomes, and functional gene modules in the Archaeplastida kingdom.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Haz Vascular de Plantas/genética , Metabolismo Secundario/genética , Selaginellaceae/genética , Vías Biosintéticas , Pared Celular/metabolismo , Celulosa/biosíntesis , Duplicación de Gen , Redes Reguladoras de Genes , Lignina/biosíntesis , Especificidad de Órganos , Filogenia , Transcriptoma/genética
15.
Plant Cell ; 32(9): 2742-2762, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699170

RESUMEN

While root diseases are among the most devastating stresses in global crop production, our understanding of root immunity is still limited relative to our knowledge of immune responses in leaves. Considering that root performance is based on the concerted functions of its different cell types, we undertook a cell type-specific transcriptome analysis to identify gene networks activated in epidermis, cortex, and pericycle cells of Arabidopsis (Arabidopsis thaliana) roots challenged with two immunity elicitors, the bacterial flagellin-derived flg22 and the endogenous Pep1 peptide. Our analyses revealed distinct immunity gene networks in each cell type. To further substantiate our understanding of regulatory patterns underlying these cell type-specific immunity networks, we developed a tool to analyze paired transcription factor binding motifs in the promoters of cell type-specific genes. Our study points toward a connection between cell identity and cell type-specific immunity networks that might guide cell types in launching immune response according to the functional capabilities of each cell type.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Redes Reguladoras de Genes/inmunología , Raíces de Plantas/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis , Basidiomycota , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Células Vegetales/inmunología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Transactivadores
16.
Plant Cell ; 32(4): 833-852, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086366

RESUMEN

Seeds are complex biological systems comprising three genetically distinct tissues nested one inside another (embryo, endosperm, and maternal tissues). However, the complexity of the kernel makes it difficult to understand intercompartment interactions without access to spatially accurate information. Here, we took advantage of the large size of the maize (Zea mays) kernel to characterize genome-wide expression profiles of tissues at different embryo/endosperm interfaces. Our analysis identifies specific transcriptomic signatures in two interface tissues compared with whole seed compartments: the scutellar aleurone layer and the newly named endosperm adjacent to scutellum (EAS). The EAS, which appears around 9 d after pollination and persists for around 11 d, is confined to one to three endosperm cell layers adjacent to the embryonic scutellum. Its transcriptome is enriched in genes encoding transporters. The absence of the embryo in an embryo specific mutant can alter the expression pattern of EAS marker genes. The detection of cell death in some EAS cells together with an accumulation of crushed cell walls suggests that the EAS is a dynamic zone from which cell layers in contact with the embryo are regularly eliminated and to which additional endosperm cells are recruited as the embryo grows.


Asunto(s)
Endospermo/genética , Transcriptoma/genética , Zea mays/embriología , Zea mays/genética , Muerte Celular , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética , Regulación hacia Arriba/genética
17.
Plant J ; 108(6): 1585-1596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695270

RESUMEN

The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other '-omic' data. In this review, we cover some more recent tools (and highlight the 'classics') for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co-expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein-protein and protein-DNA interactions. We will touch on tools that integrate different data sets at the end of the article.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Biología Computacional/métodos , Mapas de Interacción de Proteínas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bases de Datos Genéticas , Epigenómica/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Regiones Promotoras Genéticas
18.
Plant J ; 107(1): 287-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866624

RESUMEN

Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Lipidómica/métodos , Lípidos/análisis , Visualización de Datos , Metabolismo Energético , Glucurónidos/análisis , Glucurónidos/metabolismo , Metabolismo de los Lípidos , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espectrometría de Masas en Tándem/métodos , Triglicéridos/metabolismo
19.
New Phytol ; 233(1): 30-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687557

RESUMEN

The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.


Asunto(s)
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Diploidia , Poliploidía , Semillas/genética , Transcriptoma/genética
20.
Plant Cell ; 31(5): 974-992, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30914497

RESUMEN

The early maize (Zea mays) seed undergoes several developmental stages after double fertilization to become fully differentiated within a short period of time, but the genetic control of this highly dynamic and complex developmental process remains largely unknown. Here, we report a high temporal-resolution investigation of transcriptomes using 31 samples collected at an interval of 4 or 6 h within the first six days of seed development. These time-course transcriptomes were clearly separated into four distinct groups corresponding to the stages of double fertilization, coenocyte formation, cellularization, and differentiation. A total of 22,790 expressed genes including 1415 transcription factors (TFs) were detected in early stages of maize seed development. In particular, 1093 genes including 110 TFs were specifically expressed in the seed and displayed high temporal specificity by expressing only in particular period of early seed development. There were 160, 22, 112, and 569 seed-specific genes predominantly expressed in the first 16 h after pollination, coenocyte formation, cellularization, and differentiation stage, respectively. In addition, network analysis predicted 31,256 interactions among 1317 TFs and 14,540 genes. The high temporal-resolution transcriptome atlas reported here provides an important resource for future functional study to unravel the genetic control of seed development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Zea mays/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Especificidad de Órganos , Polinización , Semillas/crecimiento & desarrollo , Factores de Tiempo , Factores de Transcripción/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA