Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29654186

RESUMEN

In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.


Asunto(s)
Bacillus anthracis/efectos de la radiación , Rayos gamma , Viabilidad Microbiana/efectos de la radiación , Esporas Bacterianas/efectos de la radiación , Esterilización/métodos , Bacillus anthracis/fisiología , Técnicas Microbiológicas/métodos , Estudios Retrospectivos , Esporas Bacterianas/fisiología
2.
Opt Express ; 22(7): 8165-89, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24718194

RESUMEN

A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.


Asunto(s)
Bacterias/química , Factores Biológicos/análisis , Espectrometría de Fluorescencia/métodos , Fluorescencia
3.
Analyst ; 139(24): 6366-70, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25263740

RESUMEN

A surface-enhanced Raman spectroscopy (SERS) assay has been designed to detect Bacillus anthracis spores. The assay consists of silver nanoparticles embedded in a porous glass structure that have been functionalized with ATYPLPIR, a peptide developed to discriminately bind B. anthracis versus other species of Bacillus. Once bound, acetic acid was used to release the biomarker dipicolinic acid from the spores, which was detected by SERS through the addition of silver colloids. This SERS assay was used to selectively bind B. anthracis with a 100-fold selectivity versus B. cereus, and to detect B. anthracis Ames at concentrations of 1000 spores per mL within 15 minutes. The SERS assay measurements provide a basis for the development of systems that can detect spores collected from the air or from water supplies.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/aislamiento & purificación , Espectrometría Raman/métodos , Esporas Bacterianas/aislamiento & purificación , Secuencia de Aminoácidos , Bacillus anthracis/química , Humanos , Nanopartículas/química , Péptidos/química , Ácidos Picolínicos/análisis , Plata/química , Esporas Bacterianas/química
4.
Metabolites ; 12(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36144218

RESUMEN

Sulfur mustard (HD) poses a serious threat due to its relatively simple production process. Exposure to HD in the short-term causes an inflammatory response, while long-term exposure results in DNA and RNA damage. Respiratory tract tissue models were exposed to relatively low concentrations of HD and collected at 3 and 24 h post exposure. Histology, cytokine ELISAs, and mass spectrometric-based analyses were performed. Histology and ELISA data confirmed previously seen lung damage and inflammatory markers from HD exposure. The multi-omic mass spectrometry data showed variation in proteins and metabolites associated with increased inflammation, as well as DNA and RNA damage. HD exposure causes DNA and RNA damage that results in variation of proteins and metabolites that are associated with transcription, translation and cellular energy.

5.
J Forensic Sci ; 66(2): 758-765, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33275295

RESUMEN

The opioid crisis has continued to progress in the United States and the rest of the world. As this crisis continues, there is a pressing need for a rapid and cost-effective method for detecting fentanyl. Recent studies have suggested that lateral flow immunoassays (LFIs) could fill this technology gap. These qualitative paper-based assays contain antibodies designed to react with fentanyl and provide positive or negative results within a matter of minutes. In this study, two different LFI configurations for the detection of fentanyl were examined (dipsticks and cassettes) for effectiveness of detection using seized drug samples and postmortem urine samples. In the current study, 44 seized drug samples (32 fentanyl-positive, 12 fentanyl-negative) and 14 postmortem urine samples (10 fentanyl-positive, 4 fentanyl-negative) were analyzed. All 32 fentanyl-containing seized drug samples and 10 postmortem fentanyl-positive urine samples displayed positive LFI results with both LFI configurations. The fentanyl dipsticks displayed a sensitivity of 100%, a specificity of 75%, and an efficiency of 93.2% for seized drug samples and a sensitivity, specificity, and efficiency of 100% for postmortem urine. Analysis of the fentanyl cassettes displayed a sensitivity, specificity, and efficiency of 100% for seized drug samples and a sensitivity of 100%, a specificity of 75%, and an efficiency of 92.9% for postmortem urine samples. These data point to the utility of LFIs as a quick and low resource-dependent option for presumptive detection of fentanyl in real-world situations.


Asunto(s)
Fentanilo/análisis , Drogas Ilícitas/análisis , Inmunoensayo/métodos , Trastornos Relacionados con Opioides/orina , Cromatografía de Gases y Espectrometría de Masas , Humanos , Sensibilidad y Especificidad , Detección de Abuso de Sustancias
6.
Chem Biol Interact ; 266: 38-46, 2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28174098

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells located within various adult tissues. Recent literature has reported that human bone marrow-derived MSCs express active acetylcholinesterase (AChE) and that disruption of AChE activity by organophosphate (OP) chemicals decreases the ability of MSCs to differentiate into osteoblasts. The potential role of AChE in regulating MSC proliferation and differentiation is currently unknown. In the present study, we demonstrate that MSCs exposed to OPs have both decreased AChE activity and abundance. In addition, exposure to these OPs induced cellular death while decreasing cellular proliferation. Exposures to these compounds also reduced the adipogenic/osteogenic differentiation potentials of the MSCs. To elucidate the possible role of AChE in MSCs signaling following OP exposure, we captured potential AChE binding partners by performing polyhistidine (His8)-tagged AChE pulldowns, followed by protein identification using liquid chromatography mass spectrometry (LC-MS). Using this method, we determined that the focal adhesion protein, vinculin, is a potential binding partner with AChE in MSCs and these initial findings were confirmed with follow-up co-immunoprecipitation experiments. Identifying AChE binding partners helps to determine potential pathways associated with MSC proliferation and differentiation, and this understanding could lead to the development of future MSC-based tissue repair therapies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Organofosfatos/farmacología , Humanos , Células Madre Mesenquimatosas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA