Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain Topogr ; 37(1): 138-151, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158511

RESUMEN

The prolonged disorders of consciousness (PDOC) pose a challenge for an accurate clinical diagnosis, mainly due to patients' scarce or ambiguous behavioral responsiveness. Measurement of brain activity can support better diagnosis, independent of motor restrictions. Methods based on spectral analysis of resting-state EEG appear as a promising path, revealing specific changes within the internal brain dynamics in PDOC patients. In this study we used a robust method of resting-state EEG power spectrum parameter extraction to identify distinct spectral properties for different types of PDOC. Sixty patients and 37 healthy volunteers participated in this study. Patient group consisted of 22 unresponsive wakefulness patients, 25 minimally conscious patients and 13 patients emerging from the minimally conscious state. Ten minutes of resting EEG was acquired during wakefulness and transformed into individual power spectra. For each patient, using the spectral decomposition algorithm, we extracted maximum peak frequency within 1-14 Hz range in the centro-parietal region, and the antero-posterior (AP) gradient of the maximal frequency peak. All patients were behaviorally diagnosed using coma recovery scale-revised (CRS-R). The maximal peak frequency in the 1-14 Hz range successfully predicted both neurobehavioral capacity of patients as indicated by CRS-R total score and PDOC diagnosis. Additionally, in patients in whom only one peak within the 1-14 Hz range was observed, the AP gradient significantly contributed to the accuracy of prediction. We have identified three distinct spectral profiles of patients, likely representing separate neurophysiological modes of thalamocortical functioning. Etiology did not have significant influence on the obtained results.


Asunto(s)
Trastornos de la Conciencia , Vigilia , Humanos , Trastornos de la Conciencia/diagnóstico , Electroencefalografía/métodos , Estado de Conciencia , Encéfalo , Estado Vegetativo Persistente
2.
Sci Adv ; 9(24): eabq8657, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315139

RESUMEN

Prediction provides key advantages for survival, and cognitive studies have demonstrated that the brain computes multilevel predictions. Evidence for predictions remains elusive at the neuronal level because of the complexity of separating neural activity into predictions and stimulus responses. We overcome this challenge by recording from single neurons from cortical and subcortical auditory regions in anesthetized and awake preparations, during unexpected stimulus omissions interspersed in a regular sequence of tones. We find a subset of neurons that responds reliably to omitted tones. In awake animals, omission responses are similar to anesthetized animals, but larger and more frequent, indicating that the arousal and attentional state levels affect the degree to which predictions are neuronally represented. Omission-sensitive neurons also responded to frequency deviants, with their omission responses getting emphasized in the awake state. Because omission responses occur in the absence of sensory input, they provide solid and empirical evidence for the implementation of a predictive process.


Asunto(s)
Encéfalo , Neuronas , Animales , Nivel de Alerta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA