RESUMEN
The efficacy of electrical stimulation facilitating peripheral nerve regeneration is evidenced extensively, while the associated secondary damage resulting from repeated electrode invasion and indiscriminate stimulation is inevitable. Here, we present an optogenetics strategy that utilizes upconversion nanoparticles (UCNPs) to convert deeply penetrating near-infrared excitation into blue emission, which activates an adeno-associated virus-encoding ChR2 photoresponsive ion channel on cell membranes. The induced Ca2+ flux, similar to the ion flux in the electrical stimulation approach, efficiently regulates viability and proliferation, secretion of nerve growth factor, and neural function of RSC96 cells. Furthermore, deep near-infrared excitation is harnessed to stimulate autologous Schwann cells in situ via a UCNP-composited scaffold, which enhances nerve sprouting and myelination, consequently promoting functional recovery, electrophysiological restoration, and reinnervation of damaged nerves. This developed postoperatively noninvasive optogenetics strategy presents a novel, minimally traumatic, and enduring therapeutic stimulus to effectively promote peripheral nerve repair.
Asunto(s)
Nanopartículas , Regeneración Nerviosa , Optogenética , Células de Schwann , Nervio Ciático , Animales , Optogenética/métodos , Nanopartículas/química , Ratas , Dependovirus/genética , Línea Celular , Traumatismos de los Nervios Periféricos/terapiaRESUMEN
Bone repair strategies, based on endogenous stem cell recruitment, can effectively avoid immune rejection and the low utilization of exogenous stem cells. Endogenous stem cells can be recruited to the implantation site by loading chemokines onto bone tissue-engineered scaffolds. However, challenges such as unstable chemokine activity and easy inactivation after implantation remain significant. In the present study, composite fiber scaffolds ((IL8@LIP)-GelMA) consisting of Interleukin 8 (IL8) -loaded liposomes and GelMA were constructed by electrospinning and photocrosslinking, and its ability to recruit bone marrow-derived mesenchymal stem cells (BMSCs) and immunomodulatory effect was investigated. Compared to GelMA loaded directly with IL8, scaffolds of (IL8@LIP)-GelMA demonstrated superior protection of IL8 activity, ensuring a slow and continuous release. Both in vivo and in vitro experiments demonstrated that the (IL8@LIP)-GelMA scaffolds effectively recruited BMSCs to the desired sites. Additionally, the (IL8@LIP)-GelMA scaffolds exhibited the capacity to recruit more macrophages to the implantation site. Importantly, they promoted the polarization of macrophages toward the M2 anti-inflammatory phenotype, facilitating the transition from the inflammatory stage to the tissue repair stage. Therefore, (IL8@LIP)-GelMA scaffolds show great potential for cell-free tissue engineering applications and provide insights into the loading mode of growth factors in scaffolds.
Asunto(s)
Interleucina-8 , Liposomas , Andamios del Tejido , Ingeniería de Tejidos , Huesos , OsteogénesisRESUMEN
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Asunto(s)
Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Cobre/química , Dopamina , Carbono/química , Dióxido de Silicio/química , Colorantes Fluorescentes/químicaRESUMEN
The topically administered glaucoma medications usually encounter serious precorneal drug loss and low corneal penetration, leading to a low bioavailability. In addition, due to the complexity of glaucoma etiology, a single medication is often insufficient. In this work, we report a novel dendritic oligoethylenimine decorated liposome for codelivery of two antiglaucoma drugs, latanoprost and timolol. The liposome showed a uniform nanoscopic particle size, positive surface charge, and excellent dual-drug loading capacity. A prolonged precorneal retention is observed by using this liposomal delivery system. This liposomal delivery system presents increased cellular uptake and tight junctions opening capacity, contributing respectively to the transcellular and paracellular permeation, thereby enhancing the trans-corneal transportation. Following topical administration of one eye drop in brown Norway rats, the dual-drug-loaded liposome formulation resulted in a sustained and effective intraocular pressure reduction as long as 5 days, without inducing ocular inflammation, discomfort, and tissue damage.
Asunto(s)
Glaucoma , Liposomas , Ratas , Animales , Liposomas/uso terapéutico , Agentes Antiglaucoma , Glaucoma/tratamiento farmacológico , Timolol/farmacología , Timolol/uso terapéutico , Administración Tópica , Sistemas de Liberación de MedicamentosRESUMEN
Biomedical engineering (BME) (biomedical materials track) is a typical field of interdisciplinary integration. Its specialty education simultaneously undertakes the duo reformation responsibilities for the new engineering education and the new medical education due to its unique strengths in interdisciplinary nature, comprehensive scope of knowledge, and status of being on the cutting edge of technology. We made an analysis, in this paper, of the opportunities and challenges faced by BME (biomedical materials track) specialty education on the basis of the trends and frontiers of development in biomedical materials in the world. From the perspective of new requirements raised by major national strategies and industrial development for the qualifications and competence of professionals specializing in biomedical materials, thorough reflections were made on the specialized education of BME (biomedical materials track) under the background of the new engineering education and the new medical education. Furthermore, we proposed herein to reconstruct the specialized core knowledge system according to the main line of the reactions and the responses between the biomedical materials and human bodies at different levels and set up a series of courses of biomedical materials science centered on Materiobiology as the core. We also proposed to establish a diversified integrated reform model of the training system incorporating production, learning, research and application for highly competent BME (biomedical materials track) professionals. This paper attempts to contribute to the solution of the major issue of how to train the innovative talents and leaders who will pioneer a new round of diagnosis and treatment technology revolution and the development of the medical device industry.
Asunto(s)
Ingeniería Biomédica , Universidades , Ingeniería Biomédica/educación , Curriculum , Humanos , AprendizajeRESUMEN
Herein, porous CuO spindle-like nanosheets were fabricated on a carbon cloth using a facile hydrothermal method, and surface morphology, microstructure, and glucose sensing performance were studied. The porous spindle-like nanosheets are constructed by nanoparticles and slit-like pores, exhibiting a hierarchical structure. When used for non-enzymatic glucose sensoring, the obtained CuO nanosheet electrode exhibits a wide linear range from 0.05 to 3.30 mM, a high sensitivity of 785.2 µA mM-1 cm-2 and a low detection limit of 0.22 µM (S/N = 3). Besides, good selectivity, stability, and reproducibility for glucose detection indicate a promising application of CuO nanosheet electrodes as non-enzymatic glucose sensors.
Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Cobre/química , Glucosa/análisis , Nanoestructuras/química , Técnicas Electroquímicas , Electrodos , Límite de Detección , Porosidad , Reproducibilidad de los ResultadosRESUMEN
Co(OH)2 nanosheets/Cu(OH)2 nanorods composite electrodes for non-enzymatic glucose detection were fabricated by electrodepositing Co(OH)2 nanosheets on Cu(OH)2 nanorods substrate grown directly on the copper sheet via a simple one-step reaction. The Co(OH)2 nanosheets/Cu(OH)2 nanorods composite electrode was characterized by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The glucose sensing performance of the composite electrode was investigated by cyclic voltammetry and chronoamperometry. The composite electrode shows high sensitivity of 2366 µA mM-1 cm-2 up to 2 mM with a lower detection limit of 0.17 mM (S/N = 3). The composite electrode is highly selective to glucose in the presence of various substances that always co-exist with glucose in real blood samples. The response of the composite towards human blood serum was in good agreement with that of commercially available glucose sensors, suggesting that a promising electrode material for highly sensitive and selective non enzymatic detection of glucose can be envisioned.
RESUMEN
Magnetite (Fe3O4) nanoparticles are widely used in multiple biomedical applications due to their magnetic properties depending on the size, shape and organization of the crystals. However, the crystal growth and morphology of Fe3O4 nanoparticles remain difficult to control without using organic solvent or a high temperature. Inspired by the natural biomineralization process, a 14-mer bi-functional copolypeptide, leveraging the affinity of binding Fe3O4 together with targeting ovarian cancer cell A2780, was used as a template in the biomimetic mineralization of magnetite. Alongside this, a ginger extract was applied as an antioxidant and a size-conditioning agent of Fe3O4 crystals. As a result of the cooperative effects of the peptide and the ginger extract, the size and dispersibility of Fe3O4 were controlled based on the interaction of the amino acid and the ginger extract. Our study also demonstrated that the obtained particles with superparamagnetism could selectively be taken up by A2780 cells. In summary, the Fe3O4-QY-G nanoparticles may have potential applications in targeting tumor therapy or angiography.
Asunto(s)
Antineoplásicos Fitogénicos , Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita , Neoplasias Ováricas , Extractos Vegetales , Zingiber officinale/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Femenino , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
The new biodegradable diblock copolymers poly(ethylene glycol)-poly(L-lactide) (PEG-PLLA) were synthesized and were chemically conjugated with folate (FA) in the PEG terminal ends to form FA-PEG-PLLA. Then the hydrophobic drug paclitaxel (PTX) loaded microparticles (PTX/FA-PEG-PLLA) were produced via solution enhanced dispersion by supercritical fluids (SEDS). These microparticles exhibited sphere-like shape by scanning electron microscopy observation and showed narrow hydrodynamic size distributions by dynamic light scattering measurement. Drug loading of PTX loaded microparticles was about 7-9% and the encapsulation efficiency of PTX loaded microparticles was about 18-23%. Flow cytometry and confocal laser scanning microscope analyses revealed that fluorescein isothiocyanate labeled FA conjugated microparticles presented significantly higher cellular uptake than FA-free group due to the FA-receptor-mediated endocytosis. In vitro cytotoxicity evaluation indicated that FA-PEG-PLLA expressed negligible cytotoxicity to mouse fibroblasts L929 cells. Moreover, PTX/FA-PEG-PLLA microparticles exhibited much higher anti-cancer efficacy than PTX/PEG-PLLA microparticles against human ovarian cancer SKOV3 cells. Nude mice xenografted with SKOV3 cells were used in biodistribution studies, the results indicated that an increased amount of PTX was accumulated in the tumor tissue deal with PTX/FA-PEG-PLLA microparticles. These results collectively suggested that PTX/FA-PEG-PLLA microparticles prepared by SEDS would have potential in anti-tumor applications as a tumor-targeted drug delivery formulation.
Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Portadores de Fármacos/química , Lactatos/química , Paclitaxel/administración & dosificación , Poliésteres/química , Polietilenglicoles/química , Células 3T3 , Animales , Línea Celular , Línea Celular Tumoral , Química Farmacéutica , Cromatografía con Fluido Supercrítico , Portadores de Fármacos/síntesis química , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ratones , Ratones Desnudos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Poliésteres/síntesis química , Polietilenglicoles/síntesis química , Distribución Tisular , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Organ-specific metastasis is of great importance since most of the cancer deaths are caused by spread of the primary cancer to distant sites. Therefore, targeted anti-metastases therapies are needed to prevent cancer cells from metastasizing to different organs. The phage clone pc3-1 displaying peptide WSGPGVWGASVK selected by phage display had been identified which have high binding efficiency and remarkable cell specificity to SK-OV-3 cells. In the present work, the effects of selected cell-binding phage and cognate peptide on the cell adhesion and invasion of targeted cells were investigated. Results showed that the adhesive ability of SK-OV-3 to extracellular matrix was inhibited by pc3-1 and peptide WSGPGVWGASVK, and pc3-1 blocked SK-OV-3 cells attachment more effective than the cognate peptide. The peptide WSGPGVWGASVK suppressed the cell number of SK-OV-3 that attached to HUVECs monolayer up to 24% and could block the spreading of the attaching cells. Forthermore, the cognate peptide could inhibit the invasion of SK-OV-3 significantly. The number of invaded SK-OV-3 cells and invaded SK-OV-3-activated HUVECs pretreated with peptide WSGPGVWGASVK was decreased by 24.3% and 36.6%, respectively. All these results suggested that peptide WSGPGVWGASVK might possess anti-metastasis against SK-OV-3 cells.
Asunto(s)
Técnicas de Visualización de Superficie Celular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Péptidos/farmacología , Péptidos/uso terapéutico , Secuencia de Aminoácidos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Datos de Secuencia Molecular , Invasividad Neoplásica , Péptidos/químicaRESUMEN
Angiogenesis, a complex biologic process, is regulated by a large number of angiogenic factors, including vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Whether Bone morphogenetic proteins-2 (BMP-2), the osteoinductive factor, could significantly reinforce the effect of VEGF and FGF-2 on angiogenesis has not been studied in detail. To study the positive effects of multiple growth factors on angiogenesis, HUVECs were treated with BMP-2, VEGF, or FGF-2 singly and in binary and ternary combinations. This study further investigates the optimal timing of the ternary combination of BMP-2, VEGF and FGF-2 for angiogenesis in the chorioallantoic membrane (FGF-2 CAM). Results of single applications of BMP-2, VEGF, or FGF-2 suggested that HUVECs angiogenesis could be promoted in a dose-dependent manner and that the optimal concentration of BMP, VEGF and FGF-2 was 10, 50 and 1 ng/mL, respectively. These results indicated that the angiogenic activity of VEGF and FGF-2 was amplified by combining with BMP-2. The ternary combination of BMP-2, VEGF and FGF-2 exhibited a positive and synergistic effect on HUVECs angiogenesis, with the lower concentrations of each factor (1 ng/mL of BMP-2, 25 ng/mL of VEGF and 0.1 ng/mL of FGF-2) being sufficient to show synergistic promotion. When VEGF and FGF-2 were added in the initial activation stage and BMP-2 was added in the maturation stage, both HUVECs angiogenesis in vitro and CAM angiogenesis in vivo could be enhanced more effectively. These results could provide a basis for the controlled release systems capable of delivering multiple factors sequentially to promote angiogenesis in tissue engineering.
Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Membrana Corioalantoides/irrigación sanguínea , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Pollos , Membrana Corioalantoides/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Factores de TiempoRESUMEN
In the present study, the effects of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) on regulation of rat osteoblast (ROB) maturation in vitro were investigated. It was found that the proliferation, differentiation and mineralization of ROBs were all dose-dependently increased at particular times in the case of treatment with only one growth factor. To investigate the effects of combined treatment, ROBs were treated with either a single application of a relatively high dose of each growth factor, or binary/triple combined applications of relatively low doses of the growth factors. Osteogenic differentiation was significantly promoted in the triple combination treatment of BMP-2, VEGF and bFGF compared with the single or binary combination treatments. The optimal timing of the triple combination to enhance osteogenesis was also tested. When bFGF and VEGF were added in the early stage, and BMP-2 and VEGF were added in the late stage, osteogenic differentiation of ROBs could be enhanced more effectively. These results could be used to construct bone tissue engineering scaffolds that release growth factors sequentially.
Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Proteína Morfogenética Ósea 2/agonistas , Células Cultivadas , Sinergismo Farmacológico , Factor 2 de Crecimiento de Fibroblastos/agonistas , Osteoblastos/citología , Ratas , Factor A de Crecimiento Endotelial Vascular/agonistasRESUMEN
Given the crucial role of periosteum in bone repair, the use of artificial periosteum to induce spontaneous bone healing instead of using bone substitutes has become a potential strategy. Also, the proper transition from pro-inflammatory signals to anti-inflammatory signals is pivotal for achieving optimal repair outcomes. Hence, we designed an artificial periosteum loaded with a filamentous bacteriophage clone named P11, featuring an aligned fiber morphology. P11 endowed the artificial periosteum with the capacity to recruit bone marrow mesenchymal stem cells (BMSCs). The artificial periosteum also regulated the immune microenvironment at the bone injury site through the synergistic effects of biochemical factors and topography. Specifically, the inclusion of P11 preserved inflammatory signaling in macrophages and additionally facilitated the migration of BMSCs. Subsequently, aligned fibers stimulated macrophages, inducing alterations in cytoskeletal and metabolic activities, resulting in the polarization into the M2 phenotype. This progression encouraged the osteogenic differentiation of BMSCs and promoted vascularization. In vivo experiments showed that the new bone generated in the AP group exhibited the most efficient healing pattern. Overall, the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair indicates a promising approach for artificial periosteum development. STATEMENT OF SIGNIFICANCE: The appropriate transition of macrophages from a pro-inflammatory to an anti-inflammatory phenotype is pivotal for achieving optimal bone repair outcomes. Hence, we designed an artificial periosteum featuring an aligned fiber morphology and loaded with specific phage clones. The artificial periosteum not only fostered the recruitment of BMSCs but also achieved sequential regulation of the immune microenvironment through the synergistic effects of biochemical factors and topography, and improved the effect of bone repair. This study indicates that the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair is a promising approach for artificial periosteum development.
Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Periostio , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Bacteriófagos , Masculino , Diferenciación Celular , Ratas Sprague-Dawley , Inmunomodulación , Células RAW 264.7RESUMEN
Recent advances in adoptive T-cell therapy have delivered impressive therapeutic outcomes by instigating enduring anti-tumor responses. Nonetheless, achieving specific T-cell activation remains a challenge due to several factors. Some cancer cells evade T-cell recognition due to the scarcity of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) presentation. Notably underestimated is the impact of waning T-cell receptor (TCR) expression and the constrained formation of immune synapses (IS) between dendritic cells (DCs) and T cells, impairing T-cell activation. Addressing these complexities, we introduce a pioneering approach featuring the deployment of a gel implant. This implant establishes an on-site antigen reservoir, efficiently targets DCs in lymph nodes, and facilitates calcium ion (Ca2+) delivery. Engineered with controlled swelling, poroelasticity, and resilience, the gel is suitable for surgical implantation. Its ample encapsulation capacity accommodates both photosensitizers and nanoparticles. Upon in situ photothermal irradiation, the gel generates tumor-specific antigens. Furthermore, cationic albumin nanoparticles (cNPs) co-loaded with monophosphoryl lipid A (MPLA) and ionomycin are released, guiding antigens to tumor-draining lymph nodes for DCs maturation. This meticulous process fosters the formation of IS thereby amplifying antigen-specific T-cell activation.
Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Animales , Ratones , Ionóforos de Calcio/metabolismo , Linfocitos T , Presentación de Antígeno , Inmunoterapia , Antígenos de Neoplasias , Neoplasias/metabolismo , Ratones Endogámicos C57BLRESUMEN
The obstruction of blood-brain barrier (BBB) and the poor specific targeting are still the major obstacles and challenges of targeted nano-pharmaceutical therapy for glioblastoma (GBM) up to now. It is critical to find appropriate targeting ligands that can effectively mediate the nano-pharmaceuticals to penetrate brain capillary endothelial cells (BCECs) and then specifically bind to glioblastoma cells (GCs). Herein, a dual-targeting ligand for GBM was screened by the combination of phage display peptide library biopanning and affinity-adaptability analysis. Based on the acquisition of sub-library of peptide which exhibited the specific affinity to both BCECs and GCs, a comparison parameter of relative affinity was deliberately introduced to evaluate the relative affinity of candidate peptides to U251-MG cells and bEnd.3 cells. The optimized WTW peptide (sequenced as WTWEYTK) was provided with a high relative affinity (RU/B = 2.44), implying that its high affinity to U251-MG cells and moderate affinity to bEnd.3 cells might synergistically promote its receptor-mediated internalization and transport, the dissociation from bEnd.3, and the binding to U251-MG. The results of BBB model trials in vitro showed that the BBB penetration efficiency and GBM accumulation of WTW peptide were significantly higher than those of WSL peptide, GNH peptide, and REF peptide. Results of orthotopic GBM xenograft model assays in vivo also indicated that WTW peptide had successfully penetrated the BBB and improved accumulation in GBM. The screened WTW peptide might be the potential dual-targeting ligand to motivate the advancement of GBM targeted therapy.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Biblioteca de Péptidos , Células Endoteliales/metabolismo , Bioprospección , Ligandos , Péptidos/metabolismo , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular TumoralRESUMEN
The high wastage rate and low survival rate of seed cells in conventional bone tissue engineering (BTE) are always a challenge for tissue regeneration. Constructing scaffolds that could continuously recruit endogenous stem cells is considered a novel way to promote tissue repair. In this study, a GelMA fiber hydrogel membrane loaded interleukin 8 (IL8) (IL8-GelMA), was prepared via electrostatic spinning technology. Compared with Gelatin fiber, GelMA fiber possessed a smooth morphology with nanoscale diameter and better physical properties including hydrophilicity, elastic modulus, swelling rate and degradation rate. In addition, IL8-GelMA fiber membranes could lead an osteogenic differentiation of BMSCs. Moreover, the results of chemotaxis experiment demonstrated that both IL8 and IL8-GelMA fiber membranes promote the migration of BMSCsin vitro. These results suggested that IL8-GelMA fiber membranes can be used for cell-free scaffold of bone repair, which can not only recruit endogenous BMSCs, but also promote osteogenic differentiation of BMSCs.
Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Interleucina-8/metabolismo , Células MadreRESUMEN
Inefficient use and loss of exogenously implanted mesenchymal stem cells (MSCs) are major concerns in MSCs-based bone tissue engineering. It is a promising approach to overcome the above issues by recruiting and regulation of endogenous MSCs. However, there are few substances that can recruit MSCs effectively and specifically to the site of bone injury. In this study, we identified a phage clone (termed P11) with specific affinity for MSCs through phage display biopanning, and further investigated the effects of P11 on the cytological behavior of MSCs and macrophages. The results showed that P11 could bind MSCs specifically and promote the proliferation and migration of MSCs. Meanwhile, P11 could polarize macrophages to the M1 phenotype and significantly changed their morphology, which further enhanced the chemotaxis of MSCs. Additionally, RNA-seq results revealed that P11 could promote the secretion of osteogenesis-related markers in MSCs through the TPL2-MEK-ERK signaling pathway. Altogether, P11 has great potential to be used as growth factor alternatives in bone tissue engineering, with the advantages of cheaper and stable activity. Our study also advances the understanding of the effects of phages on macrophages and MSCs, and provides a new idea for the development in the field of phage-based tissue engineering.
Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Diferenciación Celular/genética , Osteogénesis/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Células Madre Mesenquimatosas/metabolismoRESUMEN
Pentavalent vanadium [V(V)] has been studied as bioactive ions to improve the bone defect repair; however, its osteogenic promotion mechanism is still not fully understood so far. In this study, a V-doped mesoporous bioactive glass (V-MBG) was prepared, and its effects on osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and potential signaling pathways were investigated. The physicochemical characterization revealed that the incorporation of V slightly reduced the specific surface area and increased the mesoporous pore size, and the abundant mesopores of V-MBG were beneficial to the sustained dissolution of V(V) ions as well as calcium, silicon, and phosphorus ions. Cell proliferation results indicated that the high dilution ratio (>16) V-MBG extract markedly promoted the proliferation of rBMSCs compared with the control group and the same dilution ratio MBG extract. Compared with the same dilution ratio MBG extract, diluted V-MBG extracts markedly promoted the secretion of alkaline phosphatase (ALP) and osteocalcin (OCN) protein at day 7 but insignificantly stimulated the runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor (VEGF) protein synthesis. In depth, the diluted V-MBG extracts remarkably up-regulated the expression of WNT/ß-catenin pathway direct target genes, including WNT3a, ß-catenin, and AXIN2 genes in contrast to the same dilution ratio MBG extracts, suggesting that the released V(V) ions might promote osteogenic differentiation of rBMSCs via the WNT/ß-catenin signaling pathway.
Asunto(s)
Células Madre Mesenquimatosas , Vía de Señalización Wnt , Animales , Ratas , Osteogénesis , Vanadio , Factor A de Crecimiento Endotelial Vascular , beta Catenina , Diferenciación CelularRESUMEN
Manipulating neural cell behaviors is a critical issue to various therapies for neurological diseases and damages, where matrix chirality has long been overlooked despite the proven adhesion and proliferation improvement of multiple non-neural cells by L-matrixes. Here, it is reported that the D-matrix chirality specifically enhances cell density, viability, proliferation, and survival in four different types of neural cells, contrasting its inhibition in non-neural cells. This universal impact on neural cells is defined as "chirality selection for D-matrix" and is achieved through the activation of JNK and p38/MAPK signaling pathways by the cellular tension relaxation resulting from the weak interaction between D-matrix and cytoskeleton proteins, particularly actin. Also, D-matrix promotes sciatic nerve repair effectively, both with or without non-neural stem cell implantation, by improving the population, function, and myelination of autologous Schwann cells. D-matrix chirality, as a simple, safe, and effective microenvironment cue to specifically and universally manipulate neural cell behaviors, holds extensive application potential in addressing neurological issues such as nerve regeneration, neurodegenerative disease treatment, neural tumor targeting, and neurodevelopment.
Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Células de Schwann/metabolismo , Regeneración Nerviosa , Nervio Ciático/metabolismo , NeuronasRESUMEN
INTRODUCTION: Liposomes have been widely used in drug delivery systems because the encapsulation of liposomes changes the biological distribution profile and improves the therapeutic indices of various drugs. Thermosensitive liposomes have been proven to be a precise and effective method for cancer therapy in many preclinical studies. However, the lack of specific targeting ability to cancer cells limited their application in safe and efficient chemotherapy. METHODS: In the present study, an ovarian targeting ligand namely WSGFPGVWGASVK (WSG) screened by phage display in vivo was grafted on the thermosensitive phospholipids to prepare the liposomes targeting ovarian cancer cells. WSG was first grafted onto the hydrophilic terminal of DSPEPEG2000 molecules, and then the WSG modified thermosensitive liposomes (WSG-Lipo) were prepared by thin-film hydration method. Doxorubicin hydrochloride (DOX) was used as a model drug to investigate the drug release behavior of liposomes at different temperatures. The specificity of liposomes to SKOV-3 cells was studied by cell uptake in vitro. RESULTS: The WSG-Lipo-DOX could release more DOX at 42°C than at 37°C, showing stronger specificity to SKOV-3 cells and thus selectively inhibiting SKOV-3 cells activity in vitro. CONCLUSION: The active targeting liposome showed potential in improving the specificity of thermosensitive liposomes and would be applied in the chemotherapy combined with a thermotherapy.