Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Physiol ; 109(4): 549-561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461483

RESUMEN

Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%-53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.


Asunto(s)
Envejecimiento , Fibras Musculares Esqueléticas , Humanos , Anciano , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular , Músculo Cuádriceps , Terapia por Ejercicio , Músculo Esquelético
2.
Int J Sport Nutr Exerc Metab ; 32(4): 256-264, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35313275

RESUMEN

Athletes from weight-sensitive sports are reported to consume low-fiber diets (LOW) to induce acute reductions in body mass (BM). However, evidence supporting their efficacy is anecdotal. Therefore, we aimed to determine the effect of a LOW on acute changes in BM. Nineteen healthy males (32 ± 10 years, 1.79 ± 0.07 m, 77.5 ± 8.1 kg) consumed their habitual diet (∼30 g fiber/day) for 7 consecutive days followed by 4 days of a LOW (<10 g fiber/day) that was matched for energy and macronutrient content. Participants also matched their daily exercise load during LOW to that completed during habitual diet (p = .669, average 257 ± 141 arbitrary units). BM was significantly reduced in LOW versus habitual diet after 4 days (Δ = 0.40 ± 0.77 kg or 0.49% ± 0.91%, p < .05, effect size [ES] [95% confidence interval] = -0.53 [-1.17, 0.12]) and on the morning of Day 5 (Δ = 0.58 ± 0.83 kg or 0.74% ± 0.99%, p < .01, ES = -0.69 [-1.34, -0.03]). LOW resulted in moderately higher hunger (Δ = 5 ± 9 mm, p = .015, ES = 0.55 [-0.09, 1.20]), a decline in stool frequency from 2 ± 0 to 1 ± 0 bowel movements per day (p = .012, ES = 0.64 [-0.02, 1.29]) and stool softness decrease (p = .005). Nonetheless, participants reported the diet to be tolerable (n = 18/19) and were willing to repeat it (n = 16/19). Data demonstrate for the first time that consumption of a short-term LOW induces reductions in BM.


Asunto(s)
Fibras de la Dieta , Deportes , Dieta , Heces , Humanos , Hambre , Masculino
3.
Eur J Appl Physiol ; 121(10): 2657-2674, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34131799

RESUMEN

Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico/fisiología , Enfermedades Gastrointestinales/terapia , Microbiota/fisiología , Microbioma Gastrointestinal/fisiología , Humanos , Resistencia Física/fisiología
4.
Am J Physiol Endocrinol Metab ; 318(4): E504-E513, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32069071

RESUMEN

We hypothesized that probiotic supplementation (PRO) increases the absorption and oxidation of orally ingested maltodextrin during 2 h endurance cycling, thereby sparing muscle glycogen for a subsequent time trial (simulating a road race). Measurements were made of lipid and carbohydrate oxidation, plasma metabolites and insulin, gastrointestinal (GI) permeability, and subjective symptoms of discomfort. Seven male cyclists were randomized to PRO (bacterial composition given in methods) or placebo for 4 wk, separated by a 14-day washout period. After each period, cyclists consumed a 10% maltodextrin solution (initial 8 mL/kg bolus and 2 mL/kg every 15 min) while exercising for 2 h at 55% maximal aerobic power output, followed by a 100-kJ time trial. PRO resulted in small increases in peak oxidation rates of the ingested maltodextrin (0.84 ± 0.10 vs. 0.77 ± 0.09 g/min; P = 0.016) and mean total carbohydrate oxidation (2.20 ± 0.25 vs. 1.87 ± 0.39 g/min; P = 0.038), whereas fat oxidation was reduced (0.40 ± 0.11 vs. 0.55 ± 0.10 g/min; P = 0.021). During PRO, small but significant increases were seen in glucose absorption, plasma glucose, and insulin concentration and decreases in nonesterified fatty acid and glycerol. Differences between markers of GI damage and permeability and time-trial performance were not significant (P > 0.05). In contrast to the hypothesis, PRO led to minimal increases in absorption and oxidation of the ingested maltodextrin and small reductions in fat oxidation, whereas having no effect on subsequent time-trial performance.


Asunto(s)
Ciclismo/fisiología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Suplementos Dietéticos , Probióticos/farmacología , Adulto , Estudios Cruzados , Carbohidratos de la Dieta , Método Doble Ciego , Ejercicio Físico , Ácidos Grasos no Esterificados/sangre , Glucosa/metabolismo , Glicerol/sangre , Humanos , Insulina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Polisacáridos/farmacocinética , Adulto Joven
5.
Curr Opin Clin Nutr Metab Care ; 23(6): 428-436, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32769404

RESUMEN

PURPOSE OF REVIEW: This is a review of the most up-to-date research on the effectiveness of probiotic supplementation for outcomes related to athletes and physical activity. The focus is on clinical research incorporating exercise and/or physically active participants on the nutritional effectiveness of single and multistrain preparations. RECENT FINDINGS: Findings of the included clinical studies support the notion that certain probiotics could play important roles in maintaining normal physiology and energy production during exercise which may lead to performance-improvement and antifatigue effects, improve exercise-induced gastrointestinal symptoms and permeability, stimulate/modulate of the immune system, and improve the ability to digest, absorb, and metabolize macro and micronutrients important to exercise performance and recovery/health status of those physically active. SUMMARY: The current body of literature highlights the specificity of probiotic strain/dose and potential mechanisms of action for application in sport. These novel findings open new areas research, potential use for human health, and reinforce the potential role for probiotic's in exercise performance. While encouraging, more well designed studies of probiotic supplementation in various sport applications are warranted.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Probióticos/farmacología , Fenómenos Fisiológicos en la Nutrición Deportiva , Humanos
6.
Eur J Appl Physiol ; 120(2): 493-503, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31894414

RESUMEN

PURPOSE: To investigate the effects of exercise in combination with, or without, a leucine-enriched whey protein supplement on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life (HR-QOL) in older adults. METHODS: 100 community-dwelling older adults [52% women, age: 69 ± 6 years (mean ± SD)] were randomised to four [Control (C); Exercise (E); Exercise + Protein (EP); Protein (P)] independent groups. E and EP groups completed 16 weeks of exercise [resistance (2 times/week) and functional (1 time/week]. EP and P groups were also administered a leucine-enriched whey protein supplement (3 times/day) based on body weight (1.5 g/kg/day). Muscle and fat mass (bioelectrical impedance analysis), myoelectrical muscle fatigue (surface electromyography) and HR-QOL (WHOQOL-BREF) were measured pre- and post-intervention. RESULTS: At post-intervention, the rectus femoris (E: - 4.8%/min, p = 0.007, ES = 0.86; EP: - 3.3%/min, p = 0.045, ES = 0.58) and bicep femoris (E: - 3.9%/min, p < 0.001, ES = 1.46; EP: - 4.3%/min, p < 0.001, ES = 1.58) muscles became more resistant to fatigue in the E and EP groups, respectively (p < 0.05 versus C). HR-QOL improved in the E group only. Muscle and fat mass did not change (p > 0.05). CONCLUSION: Physical exercise is a potent method to improve myoelectrical muscle fatigue and HR-QOL in older adults. However, leucine-enriched whey protein did not augment this response in those already consuming sufficient quantities of protein at trial enrolment.


Asunto(s)
Composición Corporal/fisiología , Ejercicio Físico/fisiología , Fuerza Muscular/fisiología , Proteína de Suero de Leche , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/fisiología , Anciano , Composición Corporal/efectos de los fármacos , Proteínas en la Dieta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida
7.
Eur J Appl Physiol ; 119(7): 1491-1501, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30982100

RESUMEN

PURPOSE: To evaluate the effects of probiotic supplementation on gastrointestinal (GI) symptoms, circulatory markers of GI permeability, damage, and markers of immune response during a marathon race. METHODS: Twenty-four recreational runners were randomly assigned to either supplement with a probiotic (PRO) capsule [25 billion CFU Lactobacillus acidophilus (CUL60 and CUL21), Bifidobacterium bifidum (CUL20), and Bifidobacterium animalis subs p. Lactis (CUL34)] or placebo (PLC) for 28 days prior to a marathon race. GI symptoms were recorded during the supplement period and during the race. Serum lactulose:rhamnose ratio, and plasma intestinal-fatty acid binding protein, sCD14, and cytokines were measured pre- and post-races. RESULTS: Prevalence of moderate GI symptoms reported were lower during the third and fourth weeks of the supplement period compared to the first and second weeks in PRO (p < 0.05) but not PLC (p > 0.05). During the marathon, GI symptom severity during the final third was significantly lower in PRO compared to PLC (p = 0.010). The lower symptom severity was associated with a significant difference in reduction of average speed from the first to the last third of the race between PLC (- 14.2 ± 5.8%) and PRO (- 7.9 ± 7.5%) (p = 0.04), although there was no difference in finish times between groups (p > 0.05). Circulatory measures increased to a similar extent between PRO and PLC (p > 0.05). CONCLUSION: Probiotics supplementation was associated with a lower incidence and severity of GI symptoms in marathon runners, although the exact mechanisms are yet to be elucidated. Reducing GI symptoms during marathon running may help maintain running pace during the latter stages of racing.


Asunto(s)
Citocinas/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Tracto Gastrointestinal/fisiología , Trote/fisiología , Probióticos/administración & dosificación , Adulto , Bifidobacterium , Femenino , Enfermedades Gastrointestinales/prevención & control , Tracto Gastrointestinal/microbiología , Humanos , Lactobacillus acidophilus , Lactosa/sangre , Receptores de Lipopolisacáridos/sangre , Masculino , Probióticos/uso terapéutico , Ramnosa/sangre
8.
Eur J Appl Physiol ; 117(12): 2569-2577, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058112

RESUMEN

PURPOSE: To examine the dose-response effects of acute glutamine supplementation on markers of gastrointestinal (GI) permeability, damage and, secondary, subjective symptoms of GI discomfort in response to running in the heat. METHODS: Ten recreationally active males completed a total of four exercise trials; a placebo trial and three glutamine trials at 0.25, 0.5 and 0.9 g kg-1 of fat-free mass (FFM) consumed 2 h before exercise. Each exercise trial consisted of a 60-min treadmill run at 70% of [Formula: see text] in an environmental chamber set at 30 °C. GI permeability was measured using ratio of lactulose to rhamnose (L:R) in serum. Plasma glutamine and intestinal fatty acid binding protein (I-FABP) concentrations were determined pre and post exercise. Subjective GI symptoms were assessed 45 min and 24 h post-exercise. RESULTS: Relative to placebo, L:R was likely lower following 0.25 g kg-1 (mean difference: - 0.023; ± 0.021) and 0.5 g kg-1 (- 0.019; ± 0.019) and very likely following 0.9 g kg- 1 (- 0.034; ± 0.024). GI symptoms were typically low and there was no effect of supplementation. DISCUSSION: Acute oral glutamine consumption attenuates GI permeability relative to placebo even at lower doses of 0.25 g kg-1, although larger doses may be more effective. It remains unclear if this will lead to reductions in GI symptoms. Athletes competing in the heat may, therefore, benefit from acute glutamine supplementation prior to exercise in order to maintain gastrointestinal integrity.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/sangre , Glutamina/farmacología , Calor , Absorción Intestinal , Intestinos/fisiología , Carrera/fisiología , Administración Oral , Adulto , Relación Dosis-Respuesta a Droga , Glutamina/administración & dosificación , Glutamina/sangre , Humanos , Intestinos/efectos de los fármacos , Lactosa/sangre , Masculino , Ramnosa/sangre
10.
Eur J Sport Sci ; 22(5): 755-764, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33944684

RESUMEN

As with much of science, the female athlete is under researched, particularly in the area of gastrointestinal (GI) physiology. Gut function is of pivotal importance to athletes in that it supports digestion and absorption of nutrients, as well as providing a barrier between the external environment and the circulation. While sex-derived differences in GI structure and function have been well characterised at rest, there remains a paucity of data examining this during exercise. The wider impact of the GI system has begun to be realised and it is now widely acknowledged to play a role in more systemic bodily systems. In the current review, we discuss localised issues including the GI structure, function, and microbiome of male and females. We also discuss GI-related symptoms experienced by athletes, highlight the differences in incidence between males and females, and discuss contributing factors. We then move beyond the gut to discuss wider biological processes that have been shown to have both sex-related differences and that are impacted by the GI system. Some of these areas include immune function and risk of illness, sleep, hormones, bone health and the gut-brain-axis. The magnitude of such effects and relationships is currently unknown but there is enough mechanistic data for future studies to consider a more central role that the gastrointestinal tract may play in overall female athlete health. HighlightsThere are both clear similarities and differences in male-female gastrointestinal structure and function.Females typically reported a greater prevalence of gastrointestinal symptoms at rest, in particular during menstruation, but not during exercise.The links between female microbiome, oestrogen, and systemic physiological and biological processes are yet to be fully elucidated.Many of the male-female differences seen (e.g. in immune function) may be, at least in part, influenced by such GI related differences.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Atletas , Ejercicio Físico/fisiología , Femenino , Enfermedades Gastrointestinales/epidemiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal , Humanos , Masculino
11.
J Appl Physiol (1985) ; 132(6): 1394-1406, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35446596

RESUMEN

We examined the effects of carbohydrate (CHO) delivery form on exogenous CHO oxidation, gastrointestinal discomfort, and exercise capacity. In a randomized repeated-measures design [after 24 h of high CHO intake (8 g·kg-1) and preexercise meal (2 g·kg-1)], nine trained males ingested 120 g CHO·h-1 from fluid (DRINK), semisolid gel (GEL), solid jelly chew (CHEW), or a coingestion approach (MIX). Participants cycled for 180 min at 95% lactate threshold, followed by an exercise capacity test (150% lactate threshold). Peak rates of exogenous CHO oxidation (DRINK 1.56 ± 0.16, GEL 1.58 ± 0.13, CHEW 1.59 ± 0.08, MIX 1.66 ± 0.02 g·min-1) and oxidation efficiency (DRINK 72 ± 8%, GEL 72 ± 5%, CHEW 75 ± 5%, MIX, 75 ± 6%) were not different between trials (all P > 0.05). Despite ingesting 120 g·h-1, participants reported minimal symptoms of gastrointestinal distress across all trials. Exercise capacity was also not significantly different (all P > 0.05) between conditions (DRINK 446 ± 350, GEL 529 ± 396, CHEW 596 ± 416, MIX 469 ± 395 s). Data represent the first time that rates of exogenous CHO oxidation (via stable isotope methodology) have been simultaneously assessed with feeding strategies (i.e., preexercise CHO feeding and the different forms and combinations of CHO during exercise) commonly adopted by elite endurance athletes. We conclude that 120 g·h-1 CHO (in a 1:0.8 ratio of maltodextrin or glucose to fructose) is a practically tolerable strategy to promote high CHO availability and oxidation during exercise.NEW & NOTEWORTHY We demonstrate comparable rates of exogenous CHO oxidation from fluid, semisolid, solid, or a combination of sources. Considering the sustained high rates of total and exogenous CHO oxidation and relative lack of gastrointestinal symptoms, consuming 120 g CHO·h-1 appears to be a well-tolerated strategy to promote high CHO availability during exercise. Additionally, this is the first time that rates of exogenous CHO oxidation have been assessed with feeding strategies (e.g., coingestion of multiple CHO forms) typically reported by endurance athletes.


Asunto(s)
Fructosa , Glucosa , Glucemia , Carbohidratos de la Dieta , Ejercicio Físico , Humanos , Ácido Láctico , Masculino , Oxidación-Reducción , Resistencia Física
12.
Free Radic Biol Med ; 177: 88-99, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655746

RESUMEN

Reactive oxygen species (ROS) are recognized as important signaling molecules in healthy skeletal muscle. Redox sensitive proteins can respond to intracellular changes in ROS by oxidation of reactive thiol groups on cysteine (Cys) residues. Exercise is known to induce the generation of superoxide and nitric oxide, resulting in the activation of several adaptive signaling pathways; however, it has been suggested that aging attenuates these redox-regulated adaptations to acute exercise. In the present study, we used redox proteomics to study the vastus lateralis muscles of Adult (n = 6 male, 6 female; 18-30 yrs) and Old (n = 6 male, 6 female; 64-79 yrs) adults. Participants completed a bout of high intensity cycling exercise consisting of five sets of 2-min intervals performed at 80% maximal aerobic power output (PPO), with 2 min recovery cycling at 40% PPO between sets. Muscle biopsies were collected prior to exercise, and immediately following the first, second, and fifth high intensity interval. Global proteomic analysis indicated differences in abundance of a number of individual proteins between skeletal muscles of Adult and Old subjects at rest with a significant exacerbation of these differences induced by the acute exercise. In particular, we observed an exercise-induced decrease in abundance of mitochondrial proteins in muscles from older subjects only. Redox proteome analysis revealed cysteines from five cytosolic proteins in older subjects with lower oxidation (i.e. greater reduction) than was seen in muscle from the young adults at rest. Redox homeostasis was well maintained in Adult subjects following exercise, but there was significant increase in oxidation of multiple mitochondrial and cytosolic protein cysteines in Old subjects. We also observed that oxidation of peroxiredoxin 3 occurred following exercise in both Adult and Old groups, supporting the possibility that this is a key effector protein for mitochondrial redox signaling. Thus, we show, for the first time that exercise reveals a lack of resilience in muscle of older human participants, that is apparent as a loss of mitochondrial proteins and oxidation of multiple protein cysteines that are not seen in younger subjects. The precise consequences of this redox disruption are unclear, but this likely play a role in the attenuation of multiple adaptations to exercise that are classically seen with aging. Such changes were only seen following the acute stress of exercise., highlighting the need to consider not only basal differences seen during aging but also the difference following physiological challenge.


Asunto(s)
Envejecimiento , Ejercicio Físico , Proteínas Mitocondriales , Músculo Esquelético , Proteómica , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción , Adulto Joven
13.
Metabolites ; 11(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34436476

RESUMEN

Few data are available that describe how probiotics influence systemic metabolism during endurance exercise. Metabolomic profiling of endurance athletes will elucidate mechanisms by which probiotics may confer benefits to the athlete. In this study, twenty-four runners (20 male, 4 female) were block randomised into two groups using a double-blind matched-pairs design according to their most recent Marathon performance. Runners were assigned to 28-days of supplementation with a multi-strain probiotic (PRO) or a placebo (PLB). Following 28-days of supplementation, runners performed a competitive track Marathon race. Venous blood samples and muscle biopsies (vastus lateralis) were collected on the morning of the race and immediately post-race. Samples were subsequently analysed by untargeted 1H-NMR metabolomics. Principal component analysis (PCA) identified a greater difference in the post-Marathon serum metabolome in the PLB group vs. PRO. Univariate tests identified 17 non-overlapped metabolites in PLB, whereas only seven were identified in PRO. By building a PLS-DA model of two components, we revealed combinations of metabolites able to discriminate between PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no discernible difference post-Marathon between treatment groups. In conclusion, 28-days of probiotic supplementation alters the metabolic perturbations induced by a Marathon. Such findings may be related to maintaining the integrity of the gut during endurance exercise.

14.
Free Radic Biol Med ; 160: 199-207, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32784030

RESUMEN

Skeletal muscle generates superoxide during contractions which is rapidly converted to H2O2. This molecule has been proposed to activate signalling pathways and transcription factors that regulate key adaptive responses to exercise but the concentration of H2O2 required to oxidise and activate key signalling proteins in vitro is much higher than the intracellular concentration in muscle fibers following exercise. We hypothesised that Peroxiredoxins (Prx), which reacts with H2O2 at the low intracellular concentrations found in muscle, would be rapidly oxidised in contracting muscle and hence potentially transmit oxidising equivalents to downstream signalling proteins as a method for their oxidation and activation. The aim of this study was to characterise the effects of muscle contractile activity on the oxidation of Prx1, 2 and 3 and determine if these were affected by aging. Prx1, 2 and 3 were all rapidly and reversibly oxidised following treatment with low micromolar concentrations of H2O2 in C2C12 myotubes and also in isolated mature flexor digitalis brevis fibers from adult mice following a protocol of repeated isometric contractions. Significant oxidation of Prx2 was seen within 1 min (i.e. after 12 contractions), whereas significant oxidation was seen after 2 min for Prx1 and 3. In muscle fibers from old mice, Prx2 oxidation was significantly attenuated following contractile activity. Thus we show for the first time that Prx are rapidly and reversibly oxidised in response to contractile activity in skeletal muscle and hypothesise that these proteins act as effectors of muscle redox signalling pathways which are key to adaptations to exercise that are attenuated during aging.


Asunto(s)
Peróxido de Hidrógeno , Peroxirredoxinas , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Oxidación-Reducción , Peroxirredoxinas/metabolismo
15.
J Int Soc Sports Nutr ; 17(1): 24, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398103

RESUMEN

The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more "health-associated" gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.


Asunto(s)
Rendimiento Atlético/fisiología , Dieta , Ejercicio Físico/fisiología , Microbioma Gastrointestinal/fisiología , Humanos , Fenómenos Fisiológicos en la Nutrición Deportiva
16.
J Int Soc Sports Nutr ; 16(1): 62, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864419

RESUMEN

Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.


Asunto(s)
Probióticos , Ciencias de la Nutrición y del Deporte , Atletas , Rendimiento Atlético , Composición Corporal , Ejercicio Físico , Microbioma Gastrointestinal , Humanos , Sociedades Médicas
17.
Front Sports Act Living ; 5: 1257740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547822
18.
Sports (Basel) ; 6(4)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241295

RESUMEN

Using a cross-sectional survey concussion knowledge was evaluated among forty university-level athletes (n = 20, rugby union players; n = 20, Gaelic football players) and eight experienced team coaches (n = 2, rugby union; n = 2, Gaelic football; n = 1, soccer; n = 1, hockey; n = 1, netball; n = 1, basketball). Levels of knowledge of concussion were high across all participants. Coaches had higher knowledge scores for almost all areas; however, there was evidence of important gaps even in this group. Knowledge was not sufficient in identifying concussion, and when it is safe to return to play following a concussion. Impaired knowledge of how to recognise a concussion, and misunderstanding the need for rest and rehabilitation before return to play presents a hazard to health from second impact and more catastrophic brain injury. We discuss reasons for these guideline misconceptions, and suggest that attitude issues on the significance of concussion may underlie a willingness to want to play with a concussion. This suggests the current education on sport-related concussion needs to be expanded for the appropriate management of university-level contact sports.

19.
Nutrients ; 10(7)2018 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937533

RESUMEN

The purpose of the present study was to investigate the prevalence of gastrointestinal symptoms (GIS) amongst recreational runners during a marathon race, and potential nutritional factors that may contribute. Recreational runners of the 2017 Liverpool (n = 66) and Dublin (n = 30) marathons were recruited. GIS were reported post-marathon and we considered GIS in the 7 days prior to the marathon and during the marathon using the Gastrointestinal Symptom Rating Scale (GSRS). Nutritional intake was recorded using food diaries for the day before the race, morning of the race, and during the race; 43% of participants reported moderate (≥4) GIS in the 7 days prior to the marathon and 27% reported moderate symptoms during the marathon with most common symptoms being flatulence (16%) during training, and nausea (8%) during the marathon race. Correlations between all nutritional intake and GIS were not statistically significant (p > 0.05). There were significant correlations between total GIS score (r = 0.510, p < 0.001), upper GIS score (r = 0.346, p = 0.001) and lower GIS score (r = 0.483, p < 0.001) in training and during the marathon. There appears to be a modest prevalence of GIS in recreational runners, in the week prior to a marathon and during marathon running, although there was no association with nutritional intake before or during the race.


Asunto(s)
Enfermedades Gastrointestinales/epidemiología , Carrera , Adulto , Dieta , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Resistencia Física , Prevalencia , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA