Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cytometry A ; 83(11): 989-1000, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23943293

RESUMEN

Ascorbic acid (AA) and copper have been increasingly employed in flow cytometry (FCM) and high content analysis (HCA) since the introduction of "click chemistry" as a non-destructive alternative to classical 5-bromo-2'-deoxyuridine (BrdU) immunodetection for DNA synthesis and proliferation assays. Mixtures of ascorbate and catalytic copper, under certain experimental conditions, act as oxidizing agent, catalyzing the formation of reactive hydroxyl radicals through hydrogen peroxides decomposition via Fenton reaction. We developed a procedure for BrdU incorporation detection based on the use of AA and cupric ions as DNA damaging agents. Optimal DNA damaging conditions were identified and found to provide results comparable with "click" 5-ethynyl-deoxyuridine (EdU) cycloaddition approach and classical BrdU immunodetection. Scavenger agents were found to prevent hydroxyl-induced DNA damages, providing the proof-of-concept for the use of this procedure for DNA denaturation prior to BrdU detection. We demonstrated hydroxyl radicals' reaction to be readily applicable to HCA and FCM assays, for both classical BrdU immunostaining and EdU cycloaddition procedure. This technique was successfully employed for BrdU pulse-chase experiments and in multiparametric immunofluorescence assays for the simultaneous detection of labile phosphoproteins in intact cells. The use of AA/Cu prior to immunodetection for BrdU incorporation assays is a viable alternative to chemical/physical DNA denaturing agents (acids or heat), since it allows preservation of labile epitopes such as phosphoproteins, and over enzymatic agents (digestion with DNases) for its lower cost.


Asunto(s)
Ácido Ascórbico/química , Bromodesoxiuridina/química , ADN/biosíntesis , Citometría de Flujo/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Química Clic , ADN/química , ADN/aislamiento & purificación , Replicación del ADN/genética , Humanos , Coloración y Etiquetado
2.
Molecules ; 18(9): 10870-900, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24008246

RESUMEN

From the second half of the 19th century up to modern times, the tremendous contribution of Italian chemists to the development of science resulted in the discovery of a number of innovative chemical transformations. These reactions were subsequently christened according to their inventors' name and so entered into the organic chemistry portfolio of "named organic reactions". As these discoveries were being conceived, massive social, political and geographical changes in these chemists' homeland were also occurring. In this review, a brief survey of known (and some lesser known) named organic reactions discovered by Italian chemists, along with their historical contextualization, is presented.


Asunto(s)
Técnicas de Química Sintética/historia , Química Orgánica/historia , Catálisis , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Italia , Procesos Fotoquímicos
3.
Molecules ; 16(4): 3252-314, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21512439

RESUMEN

Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.


Asunto(s)
Compuestos Orgánicos/química , Polímeros/química , Indicadores y Reactivos/química
4.
Bioorg Med Chem ; 18(19): 7113-20, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20817473

RESUMEN

A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure-activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Tiofenos/farmacología , Animales , Antineoplásicos/química , Aurora Quinasas , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Biología Computacional , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Células HL-60 , Humanos , Masculino , Ratones , Ratones SCID , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Pirazoles/síntesis química , Pirazoles/química , Estereoisomerismo , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Trasplante Heterólogo
5.
Cytometry A ; 73(7): 626-36, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18521918

RESUMEN

Quantification of BrdU incorporation into DNA is a widely used technique to assess the cell cycle status of cells. DNA denaturation is required for BrdU detection with the drawback that most protein epitopes are destroyed and classical antibody staining techniques for multiplex analysis are not possible. To address this issue we have developed a novel method that overcomes the DNA denaturation step but still allows detection of BrdU. Cells were pulsed for a short time by 5-ethynyl-2'-deoxyuridine, which is incorporated into DNA. The exposed nucleotide alkyne group of DNA was then derivatized in physiologic conditions by the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) using BrdU azides. The resulting DNA-bound bromouracil moiety was subsequently detected by commercial anti-BrdU mAb without the need for a denaturation step. Continuous labeling with EdU showed a slightly increased anti-proliferative activity compared to BrdU. However, using a lower concentration of EdU for labeling can compensate for this. Alkynyl tags could be detected quickly by a highly specific reaction using BrdU azides. Fluorescence quenching by the DNA dye PI using both BrdU azides was negligible. Our labeling method is suitable for FCM and HCA and shows a higher signal to noise ratio than other methods. This method also allowed multiplex analysis by simultaneous detection of EdU-BrdU, caspase-3, and phospho-histone 3 mAbs, proving sensitivity and feasibility of this new technique. In addition, it has the potential for use in vivo, as exemplified for bone marrow studies. We have established a new method to determine the position of cells in the cell cycle. This is superior when compared to traditional BrdU detection since it allows multiplex analysis, is more sensitive and shows less quenching with PI. The method provides new opportunities to investigate changes in protein expression at different cell cycle stages using pulse labeling experiments.


Asunto(s)
Bromodesoxiuridina/farmacología , Desoxiuridina/análogos & derivados , Citometría de Flujo/métodos , Animales , Anticuerpos/química , Células de la Médula Ósea/citología , Caspasa 3/metabolismo , Ciclo Celular , Desoxiuridina/farmacología , Células HL-60 , Histonas/química , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos
6.
Curr Protoc Cytom ; 71: 7.43.1-7.43.17, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559225

RESUMEN

Mixtures of ascorbate and copper used in certain click chemistry experimental conditions act as oxidizing agents, catalyzing the formation of reactive oxygen species through Fenton and related reactions. Hydroxyl radicals act as chemical nucleases, introducing DNA strand breaks that can be exploited for BrdU immunostaining in place of acid denaturation. This procedure is readily applicable to high content analysis and flow cytometry assays, and provides results comparable to click chemistry EdU cycloaddition and classical BrdU immunodetection. Importantly, this approach allows preservation of labile epitopes such as phosphoproteins. This unit describes an optimized method that successfully employs Fenton chemistry for simultaneous detection of phosphoproteins and BrdU in intact cells.


Asunto(s)
Bromodesoxiuridina/metabolismo , Química Clic/métodos , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Catálisis , Línea Celular Tumoral , Proliferación Celular , ADN/metabolismo , Desoxiuridina/análogos & derivados , Citometría de Flujo , Humanos , Inmunohistoquímica , Coloración y Etiquetado
7.
Curr Protoc Cytom ; 72: 7.34.1-7.34.17, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25827484

RESUMEN

Determination of incorporation of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle. However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S-phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by 5-ethynyl-2'-deoxyuridine (EdU) which is incorporated into DNA. The nucleotide-exposed ethynyl residue was then derivatized by a copper-catalyzed cycloaddition reaction ("click chemistry" coupling) using a BrdU azide probe. The resulting DNA-bound bromouracil moieties were then detected by commercial anti-BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is more sensitive than traditional BrdU and allows multicolor and multiplex analysis in flow cytometry (FCM) and image-based cytometry.


Asunto(s)
Anticuerpos/metabolismo , Bromodesoxiuridina/metabolismo , Química Clic/métodos , Coloración y Etiquetado , Animales , Proliferación Celular , Reacción de Cicloadición , ADN/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones Endogámicos BALB C
8.
ChemMedChem ; 10(2): 276-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25430902

RESUMEN

Aberrant activation of the mitogen-activated protein kinase (MAPK)-mediated pathway components, RAF-MEK-ERK, is frequently observed in human cancers and clearly contributes to oncogenesis. As part of a project aimed at finding inhibitors of B-Raf, a key player in the MAPK cascade, we originally identified a thiazole derivative endowed with high potency and selectivity, optimal in vitro ADME properties, and good pharmacokinetic profiles in rodents, but that suffers from elevated hERG inhibitory activity. An optimization program was thus undertaken, focused mainly on the elaboration of the R(1) and R(2) groups of the scaffold. This effort ultimately led to N-(4-{2-(1-cyclopropylpiperidin-4-yl)-4-[3-(2,5-difluorobenzenesulfonylamino)-2-fluorophenyl]thiazol-5-yl}-pyridin-2-yl)acetamide (20), which maintains favorable in vitro and in vivo properties, but lacks hERG liability. Besides exhibiting potent antiproliferative activity against only cell lines bearing B-Raf V600E or V600D mutations, compound 20 also intriguingly shows a weaker "paradoxical" activation of MEK in non-mutant B-Raf cells than other known B-Raf inhibitors. It also demonstrates very good efficacy in vivo against the A375 xenograft melanoma model (tumor volume inhibition >90% at 10 mg kg(-1) ); it is therefore a suitable candidate for preclinical development.


Asunto(s)
Antineoplásicos/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/química , Tiazoles/química , Administración Oral , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sulfonamidas/uso terapéutico , Sulfonamidas/toxicidad , Tiazoles/farmacología , Tiazoles/uso terapéutico , Tiazoles/toxicidad , Trasplante Heterólogo
9.
J Med Chem ; 47(13): 3367-80, 2004 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-15189033

RESUMEN

Abnormal proliferation mediated by disruption of the normal cell cycle mechanisms is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDK) and cyclins, such as CDK2/cyclin A and CDK2/cyclin E, and inhibiting their kinase activity are regarded as promising antitumor agents to complement the existing therapies. From a high-throughput screening effort, we identified a new class of CDK2/cyclin A/E inhibitors. The hit-to-lead expansion of this class is described. X-ray crystallographic data of early compounds in this series, as well as in vitro testing funneled for rapidly achieving in vivo efficacy, led to a nanomolar inhibitor of CDK2/cyclin A (N-(5-cyclopropyl-1H-pyrazol-3-yl)-2-(2-naphthyl)acetamide (41), PNU-292137, IC50 = 37 nM) with in vivo antitumor activity (TGI > 50%) in a mouse xenograft model at a dose devoid of toxic effects.


Asunto(s)
Acetamidas/síntesis química , Antineoplásicos/síntesis química , Quinasas CDC2-CDC28/antagonistas & inhibidores , Ciclina A/antagonistas & inhibidores , Pirazoles/síntesis química , Acetamidas/química , Acetamidas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Quinasas CDC2-CDC28/química , Línea Celular Tumoral , Cristalografía por Rayos X , Ciclina A/química , Quinasa 2 Dependiente de la Ciclina , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Trasplante de Neoplasias , Pirazoles/química , Pirazoles/farmacología , Relación Estructura-Actividad , Trasplante Heterólogo
10.
Curr Protoc Cytom ; Chapter 7: Unit7.34, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18770651

RESUMEN

Determination of incorporation of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle (see UNIT 7.7). However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S-phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by an alkenyl deoxyuridine (5-ethynyl-2'-deoxyuridine, EdU), which is incorporated into DNA. The nucleotide exposed ethynyl residue was then derivatized by a copper-catalyzed cycloaddition reaction ("click chemistry" coupling) using a BrdU azide probe. The resulting DNA-bound bromouracil moieties were then detected by commercial anti-BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is preferred over traditional BrdU detection since it is more sensitive and allows multicolor and multiplex analysis in FCM and imaging.


Asunto(s)
Anticuerpos Monoclonales , Bromodesoxiuridina/análisis , Proliferación Celular , ADN/análisis , Citometría de Flujo/métodos , Coloración y Etiquetado/métodos , Bromodesoxiuridina/química , Bromodesoxiuridina/inmunología , ADN/química , Métodos , Fase S
11.
J Comb Chem ; 7(3): 463-73, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15877475

RESUMEN

A traceless solid-phase synthesis of oxazoles 4 via Robinson-Gabriel reaction of solid-supported alpha-acylamino ketones 2 has been achieved. The reaction requires that the cyclization precursor be linked to a benzhydrylic-type linker (compounds 2) and that trifluoroacetic anhydride be used as the cyclodehydrating agent. The solvent has a dramatic effect on the latter reaction, which goes to completion and follows a cyclative-type mechanism only when an ethereal solvent is used. Different synthetic routes have been investigated toward assembling compounds 2. The most straightforward one, which we have validated more extensively, comprises the reaction of Merrifield alpha-methoxyphenyl (MAMP) resin with an alpha-amino ketone to form compounds 1, which are, in turn, acylated. Other methodologies and strategies allowing for the synthesis of compounds 1 that have been investigated include direct alkylation of Rink amide resin; reductive amination of the latter with alpha-keto aldehydes; reaction of MAMP resin with alpha-amino alcohols, followed by oxidation; and protection of Rink amide resin with either 2,4-dinitrosulfonyl or allyl group, followed by alkylation and removal of protecting group. In addition, we disclose a novel variant of the Ugi four-component reaction that allows for the preparation of compounds 2 in a single synthetic step.


Asunto(s)
Técnicas Químicas Combinatorias , Fluoroacetatos , Oxazoles/síntesis química , Tecnología Farmacéutica , Ácido Trifluoroacético/química , Anhídridos Acéticos , Acilación , Amidas/química , Aminación , Aminas/química , Amino Alcoholes/química , Ciclización , Cetonas/química , Modelos Químicos , Oxidación-Reducción , Resinas Sintéticas/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA