Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Physiol ; 596(13): 2565-2579, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29682760

RESUMEN

KEY POINTS: Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2-/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. ABSTRACT: Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2-/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2-/- mice display a slight but significant decrease in its specific force. Park2-/- muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2+/+ muscles, the mitochondrial function of Park2-/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2-/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles.


Asunto(s)
Mitocondrias/patología , Contracción Muscular , Músculo Esquelético/patología , Biogénesis de Organelos , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Autofagia , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/metabolismo
2.
FASEB J ; 28(4): 1621-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371120

RESUMEN

Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.


Asunto(s)
Núcleo Celular/metabolismo , Endodesoxirribonucleasas/metabolismo , Mitocondrias/metabolismo , Atrofia Muscular/metabolismo , Transporte Activo de Núcleo Celular , Adulto , Anciano , Envejecimiento/metabolismo , Apoptosis , Biopsia , Calcio/metabolismo , Humanos , Immunoblotting , Imagen por Resonancia Magnética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Permeabilidad , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
3.
Exerc Sport Sci Rev ; 42(2): 45-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24508741

RESUMEN

It is accepted widely that fast-twitch muscle fibers are preferentially impacted in aging muscle, yet we hypothesize that this is not valid when aging muscle atrophy becomes severe. In this review, we summarize the evidence of fiber type-specific effect in aging muscle and the potential confounding roles of fibers coexpressing multiple myosin heavy-chain isoforms and their histochemical identification.


Asunto(s)
Envejecimiento/fisiología , Fibras Musculares de Contracción Rápida/clasificación , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/clasificación , Fibras Musculares de Contracción Lenta/fisiología , Atrofia Muscular/fisiopatología , Adenosina Trifosfatasas , Envejecimiento/patología , Animales , Histocitoquímica , Humanos , Fibras Musculares de Contracción Rápida/química , Fibras Musculares de Contracción Lenta/química , Cadenas Pesadas de Miosina/análisis , Isoformas de Proteínas/análisis
4.
Sci Rep ; 5: 8717, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732599

RESUMEN

Anticancer treatments for childhood acute lymphoblastic leukaemia (ALL) are highly effective but are now implicated in causing impaired muscle function in long-term survivors. However, no comprehensive assessment of skeletal muscle mitochondrial functions in long-term survivors has been performed and the presence of persistent chemotherapy-induced skeletal muscle mitochondrial dysfunction remains a strong possibility. Non-tumour-bearing mice were treated with two drugs that have been used frequently in ALL treatment (doxorubicin and dexamethasone) for up to 4 cycles at 3-week intervals and euthanized 3 months after the 4th cycle. Treated animals had impaired growth and lower muscle mass as well as reduced mitochondrial respiration and increased reactive oxygen species production per unit oxygen consumption. Mitochondrial DNA content and protein levels of key mitochondrial membrane proteins and markers of mitochondrial biogenesis were unchanged, but protein levels of Parkin were reduced. This suggests a novel pattern of chemotherapy-induced mitochondrial dysfunction in skeletal muscle that persists because of an acquired defect in mitophagy signaling. The results could explain the observed functional impairments in adult survivors of childhood ALL and may also be relevant to long-term survivors of other cancers treated with similar regimes.


Asunto(s)
Antraciclinas/farmacología , Antineoplásicos/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antraciclinas/administración & dosificación , Antineoplásicos/administración & dosificación , Respiración de la Célula/efectos de los fármacos , ADN Mitocondrial , Dexametasona/administración & dosificación , Dexametasona/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Femenino , Ratones , Mitocondrias Musculares/genética , Mitofagia/efectos de los fármacos , Músculo Esquelético/patología , Mutación , Estrés Oxidativo , Eliminación de Secuencia
5.
Exp Gerontol ; 47(12): 913-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22884852

RESUMEN

Although slow myofibers are considered less susceptible to atrophy with aging, slow fiber atrophy may have been underestimated previously. First, the marked atrophy of the aging rat soleus (Sol) muscle cannot be explained by the atrophy of only the fast fibers, due to their low abundance. Second, the increase in small fibers co-expressing both fast and slow myosin heavy chains (MHC) in the aging rat Sol is proportional to a decline in pure MHC slow fibers (Snow et al., 2005), suggesting that these MHC co-expressing fibers represent formerly pure slow fibers. Thus, we examined the size and proportion of MHC slow, MHC fast, and MHC fast-slow co-expressing fibers in the Sol and mixed region of the gastrocnemius (Gas) muscle in young adult (YA) and senescent (SEN) rats. Our results suggest that formerly pure MHC slow fibers are the source of MHC co-expressing fibers with aging in both muscle regions. Accounting for the atrophy of these fibers in calculating MHC slow fiber atrophy with aging revealed that MHC slow fibers atrophy on average by 40% in the Sol and by 38% in the mixed Gas, values which are similar to the 60% and 31% atrophy of pure MHC fast fibers in the Sol and mixed Gas, respectively. Probing for the atrophy-dependent ubiquitin ligase, MAFbx (atrogin 1), it was suggested that former slow fibers acquire atrophy potential via the up-regulation of MAFbx coincident with the co-expression of fast MHC. These results redefine the impact of aging on slow fiber atrophy, and emphasize the necessity of addressing the atrophy of fast and slow fibers in seeking treatments for aging muscle atrophy.


Asunto(s)
Envejecimiento/patología , Fibras Musculares de Contracción Lenta/patología , Atrofia Muscular/patología , Cadenas Pesadas de Miosina/metabolismo , Envejecimiento/metabolismo , Animales , Masculino , Microscopía Confocal , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Ratas , Ratas Endogámicas F344 , Proteínas Ligasas SKP Cullina F-box/metabolismo
6.
PLoS One ; 7(1): e29082, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22235261

RESUMEN

Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav1.5, in young adult (YA) and senescent (SEN) rats. To gain insights into the mechanisms driving myofiber atrophy, we also examined the myofiber expression of the two primary ubiquitin ligases necessary for muscle atrophy (MAFbx, MuRF1). MN soma number in lumbar spinal cord declined 27% between YA (638±34 MNs×mm⁻¹) and SEN (469±13 MNs×mm⁻¹). Nav1.5 positive fibers (1548±70 µm²) were 35% smaller than Nav1.5 negative fibers (2367±78 µm²; P<0.05) in SEN muscle, whereas Nav1.5 negative fibers in SEN were only 7% smaller than fibers in YA (2553±33 µm²; P<0.05) where no Nav1.5 labeling was seen, suggesting denervation is the primary cause of aging myofiber atrophy. Nav1.5 positive fibers had higher levels of MAFbx and MuRF1 (P<0.05), consistent with involvement of the proteasome proteolytic pathway in the atrophy of denervated muscle fibers in aging muscle. In summary, our study provides the first quantitative assessment of the contribution of denervation to myofiber atrophy in aging muscle, suggesting it explains the majority of the atrophy we observed. This striking result suggests a renewed focus should be placed on denervation in seeking understanding of the causes of and treatments for aging muscle atrophy.


Asunto(s)
Envejecimiento/fisiología , Desnervación/efectos adversos , Regulación de la Expresión Génica , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Cadenas Pesadas de Miosina/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Atrofia/metabolismo , Atrofia/patología , Atrofia/fisiopatología , Recuento de Células , Femenino , Masculino , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Tamaño de los Órganos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , Proteínas Ligasas SKP Cullina F-box/metabolismo , Canales de Sodio/metabolismo , Médula Espinal/patología , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
7.
Exp Gerontol ; 46(8): 660-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21513786

RESUMEN

The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 µm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 µm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon.


Asunto(s)
Envejecimiento/patología , Complejo IV de Transporte de Electrones/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Atrofia Muscular/patología , Unión Neuromuscular/patología , Sarcopenia/patología , Envejecimiento/metabolismo , Animales , Inmunohistoquímica , Masculino , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares de Contracción Lenta/enzimología , Atrofia Muscular/enzimología , Unión Neuromuscular/enzimología , Ratas , Sarcopenia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA