Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 27(22): 32855-32862, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684490

RESUMEN

By irradiating a water jet with double pulses, we demonstrate 4-fold higher THz wave generation than for a single pump pulse. The dependence of the enhanced THz signal on the temporal delay between two collinear pulses reveals the optimal time for launching signal pulse is near 2-4 ps, which corresponds to the time needed to create the complete pre-ionization state when sufficient electron density is already induced, and there is no plasma reflection of the pump pulse radiation. The increase in THz waves generation efficiency corresponds to the case of water jet excitation by the pulses with an optimal duration for a certain jet thickness, which is determined by the spatial pulse size. Using a theoretical model of the interaction of a high-intensity sub-picosecond pulse with an isotropic medium, we held a numerical simulation, which well describes the experimental results when using 3 ps value of population relaxation time. Thus, in this work, double pump method allows not only to increase the energy of the generated THz waves, but also to determine the characteristic excited state lifetime of liquid water. The optical-to-terahertz conversion efficiency in case of double pulse excitation of water column is of the order of 0.5⋅10 -3, which exceeds the typical values for THz waves generation during two-color filamentation in air and comparable with the achievable values due to the optical rectification in some crystals.

2.
Opt Express ; 27(8): 10419-10425, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052901

RESUMEN

The values of the nonlinear refractive index coefficient for various materials in the terahertz frequency range exceed the ones in both visible and NIR ranges by several orders of magnitude. This allows to create nonlinear switches, modulators, systems requiring lower control energies in the terahertz frequency range. We report the direct measurement of the nonlinear refractive index coefficient of liquid water by using the Z-scan method with broadband pulsed THz beam. Our experimental result shows that nonlinear refractive index coefficient in water is positive and can be as large as 7×10-10 cm2/W in the THz frequency range, which exceeds the values for the visible and NIR ranges by 6 orders of magnitude. To estimate n2, we use the theoretical model that takes into account ionic vibrational contribution to the third-order susceptibility. We show that the origins of the nonlinearity observed are the anharmonicity of molecular vibrations.

3.
Opt Express ; 27(11): 15485-15494, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163744

RESUMEN

Polar liquids are strong absorbers of electromagnetic waves in the terahertz range, therefore, historically such liquids have not been considered as good candidates for terahertz sources. However, flowing liquid medium has explicit advantages, such as a higher damage threshold compared to solid-state sources and more efficient ionization process compared to gases. Here we report systematic study of efficient generation of terahertz radiation in flat liquid jets under sub-picosecond single-color optical excitation. We demonstrate how medium parameters such as molecular density, ionization energy and linear absorption contribute to the terahertz emission from the flat liquid jets. Our simulation and experimental measurements reveal that the terahertz energy has quasi-quadratic dependence on the optical excitation pulse energy. Moreover, the optimal pump pulse duration, which depends on the thickness of the jet is theoretically predicted and experimentally confirmed. The obtained optical-to-terahertz energy conversion efficiency is more than 0.05%. It is comparable to the commonly used optical rectification in most of electro-optical crystals and two-color air filamentation. These results, significantly advancing prior research, can be successfully applied to create a new alternative source of terahertz radiation.

4.
Appl Opt ; 54(8): 2113-7, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25968391

RESUMEN

A femtosecond pulse train with THz repetition rate generated by the interference of two phase-modulated pulses has been recorded experimentally. Pulse repetition rates and their duration have been measured. It has been shown that at the 50-fs time delay between phase-modulated pulses the repetition rate is 3.1 THz with a pulse width of 200 fs, while at the 120-fs time delay the repetition rate is 7.1 THz with a pulse width of 67 fs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA