Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 21(4): 541-560, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33387999

RESUMEN

Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.


Asunto(s)
Inteligencia Artificial , COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , Atención a la Salud/métodos , Pandemias , Medición de Riesgo , SARS-CoV-2 , Enfermedades Cardiovasculares/terapia , Comorbilidad , Humanos , Factores de Riesgo
2.
Rheumatol Int ; 40(12): 1921-1939, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32857281

RESUMEN

Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients.


Asunto(s)
Artritis Reumatoide/fisiopatología , Aterosclerosis/diagnóstico , Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Artritis Reumatoide/complicaciones , Aterosclerosis/complicaciones , Aterosclerosis/fisiopatología , Arterias Carótidas/patología , Aprendizaje Profundo , Progresión de la Enfermedad , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Medición de Riesgo
3.
Metabolites ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448500

RESUMEN

Parkinson's disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.

4.
Diagnostics (Basel) ; 12(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626389

RESUMEN

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

5.
J Clin Med ; 11(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36431321

RESUMEN

A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.

6.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005433

RESUMEN

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

7.
IEEE J Biomed Health Inform ; 25(11): 4128-4139, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379599

RESUMEN

SARS-CoV-2 has infected over ∼165 million people worldwide causing Acute Respiratory Distress Syndrome (ARDS) and has killed ∼3.4 million people. Artificial Intelligence (AI) has shown to benefit in the biomedical image such as X-ray/Computed Tomography in diagnosis of ARDS, but there are limited AI-based systematic reviews (aiSR). The purpose of this study is to understand the Risk-of-Bias (RoB) in a non-randomized AI trial for handling ARDS using novel AtheroPoint-AI-Bias (AP(ai)Bias). Our hypothesis for acceptance of a study to be in low RoB must have a mean score of 80% in a study. Using the PRISMA model, 42 best AI studies were analyzed to understand the RoB. Using the AP(ai)Bias paradigm, the top 19 studies were then chosen using the raw-cutoff of 1.9. This was obtained using the intersection of the cumulative plot of "mean score vs. study" and score distribution. Finally, these studies were benchmarked against ROBINS-I and PROBAST paradigm. Our observation showed that AP(ai)Bias, ROBINS-I, and PROBAST had only 32%, 16%, and 26% studies, respectively in low-moderate RoB (cutoff>2.5), however none of them met the RoB hypothesis. Further, the aiSR analysis recommends six primary and six secondary recommendations for the non-randomized AI for ARDS. The primary recommendations for improvement in AI-based ARDS design inclusive of (i) comorbidity, (ii) inter-and intra-observer variability studies, (iii) large data size, (iv) clinical validation, (v) granularity of COVID-19 risk, and (vi) cross-modality scientific validation. The AI is an important component for diagnosis of ARDS and the recommendations must be followed to lower the RoB.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Inteligencia Artificial , Humanos , Pulmón , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , SARS-CoV-2
8.
World J Diabetes ; 12(3): 215-237, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33758644

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between "DM/COVID-19". This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and "COVID-triggered DM" patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in "Diabetes patients during COVID-19" or "new-onset Diabetes triggered by COVID-19 in Non-Diabetes patients".

9.
Int J Comput Assist Radiol Surg ; 16(3): 423-434, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33532975

RESUMEN

BACKGROUND: COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans. METHODOLOGY: Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based (VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation (90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evaluation and bispectrum analysis for CT lung characterisation. RESULTS: Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-glass opacities (GGO), further validating our AI models. CONCLUSIONS: We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion in CoP patients. Further, our online system takes < 2 s for inference.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Neumonía/diagnóstico por imagen , Aprendizaje Profundo , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
10.
Int Angiol ; 40(2): 150-164, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33236868

RESUMEN

Chronic kidney disease (CKD) and cardiovascular disease (CVD) together result in an enormous burden on global healthcare. The estimated glomerular filtration rate (eGFR) is a well-established biomarker of CKD and is associated with adverse cardiac events. This review highlights the link between eGFR reduction and that of atherosclerosis progression, which increases the risk of adverse cardiovascular events. In general, CVD risk assessments are performed using conventional risk prediction models. However, since these conventional models were developed for a specific cohort with a unique risk profile and further these models do not consider atherosclerotic plaque-based phenotypes, therefore, such models can either underestimate or overestimate the risk of CVD events. This review examined the approaches used for CVD risk assessments in CKD patients using the concept of integrated risk factors. An integrated risk factor approach is one that combines the effect of conventional risk predictors and non-invasive carotid ultrasound image-based phenotypes. Furthermore, this review provided insights into novel artificial intelligence methods, such as machine learning and deep learning algorithms, to carry out accurate and automated CVD risk assessments and survival analyses in patients with CKD.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico por imagen , Tasa de Filtración Glomerular , Humanos , Fenotipo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico , Medición de Riesgo , Factores de Riesgo , Ultrasonido
11.
Comput Biol Med ; 130: 104210, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33550068

RESUMEN

COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Humanos
12.
Front Biosci (Landmark Ed) ; 26(11): 1312-1339, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856770

RESUMEN

Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.


Asunto(s)
Arterias/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , COVID-19/fisiopatología , Enfermedades Cardiovasculares/diagnóstico por imagen , Estado Nutricional , Algoritmos , COVID-19/diagnóstico por imagen , COVID-19/virología , Humanos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
13.
Cardiovasc Diagn Ther ; 10(4): 939-954, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32968652

RESUMEN

BACKGROUND: Vascular age (VA) has recently emerged for CVD risk assessment and can either be computed using conventional risk factors (CRF) or by using carotid intima-media thickness (cIMT) derived from carotid ultrasound (CUS). This study investigates a novel method of integrating both CRF and cIMT for estimating VA [so-called integrated VA (IVA)]. Further, the study analyzes and compares CVD/stroke risk using the Framingham Risk Score (FRS)-based risk calculator when adapting IVA against VA. METHODS: The system follows a four-step process: (I) VA using cIMT based using linear-regression (LR) model and its coefficients; (II) VA prediction using ten CRF using a multivariate linear regression (MLR)-based model with gender adjustment; (III) coefficients from the LR-based model and MLR-based model are combined using a linear model to predict the final IVA; (IV) the final step consists of FRS-based risk stratification with IVA as inputs and benchmarked against FRS using conventional method of CA. Area-under-the-curve (AUC) is computed using IVA and benchmarked against CA while taking the response variable as a standardized combination of cIMT and glycated hemoglobin. RESULTS: The study recruited 648 patients, 202 were Japanese, 314 were Asian Indian, and 132 were Caucasians. Both left and right common carotid arteries (CCA) of all the population were scanned, thus a total of 1,287 ultrasound scans. The 10-year FRS using IVA reported higher AUC (AUC =0.78) compared with 10-year FRS using CA (AUC =0.66) by ~18%. CONCLUSIONS: IVA is an efficient biomarker for risk stratifications for patients in routine practice.

14.
Angiology ; 71(10): 920-933, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32696658

RESUMEN

The objectives of this study are to (1) examine the "10-year cardiovascular risk" in the common carotid artery (CCA) versus carotid bulb using an integrated calculator called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0) and (2) evaluate the performance of AECRS2.0 against "conventional cardiovascular risk calculators." These objectives are met by measuring (1) image-based phenotypes and AECRS2.0 score computation and (2) performance evaluation of AECRS2.0 against 12 conventional cardiovascular risk calculators. The Asian-Indian cohort (n = 379) with type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), or hypertension were retrospectively analyzed by acquiring the 1516 carotid ultrasound scans (mean age: 55 ± 10.1 years, 67% males, ∼92% with T2DM, ∼83% with CKD [stage 1-5], and 87.5% with hypertension [stage 1-2]). The carotid bulb showed a higher 10-year cardiovascular risk compared to the CCA by 18% (P < .0001). Patients with T2DM and/or CKD also followed a similar trend. The carotid bulb demonstrated a superior risk assessment compared to CCA in patients with T2DM and/or CKD by showing: (1) ∼13% better than CCA (0.93 vs 0.82, P = .0001) and (2) ∼29% better compared with 12 types of risk conventional calculators (0.93 vs 0.72, P = .06).


Asunto(s)
Arteria Carótida Común/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Hipertensión/diagnóstico por imagen , Insuficiencia Renal Crónica/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Adulto , Anciano , Pueblo Asiatico , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Hipertensión/complicaciones , India , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Estudios Retrospectivos , Medición de Riesgo
15.
Int Angiol ; 39(4): 290-306, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32214072

RESUMEN

BACKGROUND: Recently, a 10-year image-based integrated calculator (called AtheroEdge Composite Risk Score-AECRS1.0) was developed which combines conventional cardiovascular risk factors (CCVRF) with image phenotypes derived from carotid ultrasound (CUS). Such calculators did not include chronic kidney disease (CKD)-based biomarker called estimated glomerular filtration rate (eGFR). The novelty of this study is to design and develop an advanced integrated version called-AECRS2.0 that combines eGFR with image phenotypes to compute the composite risk score. Furthermore, AECRS2.0 was benchmarked against QRISK3 which considers eGFR for risk assessment. METHODS: The method consists of three major steps: 1) five, current CUS image phenotypes (CUSIP) measurements using AtheroEdge system (AtheroPoint, CA, USA) consisting of: average carotid intima-media thickness (cIMTave), maximum cIMT (cIMTmax), minimum cIMT (cIMTmin), variability in cIMT (cIMTV), and total plaque area (TPA); 2) five, 10-year CUSIP measurements by combining these current five CUSIP with 11 CCVRF (age, ethnicity, gender, body mass index, systolic blood pressure, smoking, carotid artery type, hemoglobin, low-density lipoprotein cholesterol, total cholesterol, and eGFR); 3) AECRS2.0 risk score computation and its comparison to QRISK3 using area-under-the-curve (AUC). RESULTS: South Asian-Indian 339 patients were retrospectively analyzed by acquiring their left/right common carotid arteries (678 CUS, mean age: 54.25±9.84 years; 75.22% males; 93.51% diabetic with HbA1c ≥6.5%; and mean eGFR 73.84±20.91 mL/min/1.73m2). The proposed AECRS2.0 reported higher AUC (AUC=0.89, P<0.001) compared to QRISK3 (AUC=0.51, P<0.001) by ~74% in CKD patients. CONCLUSIONS: An integrated calculator AECRS2.0 can be used to assess the 10-year CVD/stroke risk in patients suffering from CKD. AECRS2.0 was much superior to QRISK3.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Biomarcadores , Enfermedades Cardiovasculares/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/diagnóstico , Estudios Retrospectivos
16.
Angiology ; 71(6): 520-535, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32180436

RESUMEN

We evaluated the association between automatically measured carotid total plaque area (TPA) and the estimated glomerular filtration rate (eGFR), a biomarker of chronic kidney disease (CKD). Automated average carotid intima-media thickness (cIMTave) and TPA measurements in carotid ultrasound (CUS) were performed using AtheroEdge (AtheroPoint). Pearson correlation coefficient (CC) was then computed between the TPA and eGFR for (1) males versus females, (2) diabetic versus nondiabetic patients, and (3) between the left and right carotid artery. Overall, 339 South Asian Indian patients with either type 2 diabetes mellitus (T2DM) or CKD, or hypertension (stage 1 or stage 2) were retrospectively analyzed by acquiring cIMTave and TPA measurements of their left and right common carotid arteries (CCA; total CUS: 678, mean age: 54.2 ± 9.8 years; 75.2% males; 93.5% with T2DM). The CC between TPA and eGFR for different scenarios were (1) for males and females -0.25 (P < .001) and -0.35 (P < .001), respectively; (2) for T2DM and non-T2DM -0.26 (P < .001) and -0.49 (P = .02), respectively, and (3) for left and right CCA -0.25 (P < .001) and -0.23 (P < .001), respectively. Automated TPA is an equally reliable biomarker compared with cIMTave for patients with CKD (with or without T2DM) with subclinical atherosclerosis.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Diabetes Mellitus Tipo 2 , Tasa de Filtración Glomerular , Riñón/fisiopatología , Placa Aterosclerótica , Insuficiencia Renal Crónica/fisiopatología , Adulto , Anciano , Pueblo Asiatico , Presión Sanguínea , Enfermedades de las Arterias Carótidas/etnología , Estudios Transversales , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnología , Femenino , Humanos , Hipertensión/etnología , Hipertensión/fisiopatología , India/epidemiología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/etnología , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
17.
Front Biosci (Landmark Ed) ; 25(6): 1132-1171, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32114427

RESUMEN

Diabetes and atherosclerosis are the predominant causes of stroke and cardiovascular disease (CVD) both in low- and high-income countries. This is due to the lack of appropriate medical care or high medical costs. Low-cost 10-year preventive screening can be used for deciding an effective therapy to reduce the effects of atherosclerosis in diabetes patients. American College of Cardiology (ACC)/American Heart Association (AHA) recommended the use of 10-year risk calculators, before advising therapy. Conventional risk calculators are suboptimal in certain groups of patients because their stratification depends on (a) current blood biomarkers and (b) clinical phenotypes, such as age, hypertension, ethnicity, and sex. The focus of this review is on risk assessment using innovative composite risk scores that use conventional blood biomarkers combined with vascular image-based phenotypes. AtheroEdge™ tool is beneficial for low-moderate to high-moderate and low-risk to high-risk patients for the current and 10-year risk assessment that outperforms conventional risk calculators. The preventive screening tool that combines the image-based phenotypes with conventional risk factors can improve the 10-year cardiovascular/stroke risk assessment.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Complicaciones de la Diabetes/diagnóstico por imagen , Complicaciones de la Diabetes/prevención & control , Medicina Preventiva/métodos , Ultrasonografía/métodos , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/prevención & control , Análisis Costo-Beneficio , Humanos , Medicina Preventiva/economía , Medición de Riesgo/economía , Medición de Riesgo/métodos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/prevención & control , Ultrasonografía/economía
18.
Comput Biol Med ; 124: 103960, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32919186

RESUMEN

Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.


Asunto(s)
Betacoronavirus , Lesiones Encefálicas/epidemiología , Infecciones por Coronavirus/epidemiología , Lesiones Cardíacas/epidemiología , Neumonía Viral/epidemiología , Inteligencia Artificial , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , Lesiones Encefálicas/clasificación , Lesiones Encefálicas/diagnóstico por imagen , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Comorbilidad , Biología Computacional , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/diagnóstico por imagen , Aprendizaje Profundo , Lesiones Cardíacas/clasificación , Lesiones Cardíacas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/diagnóstico por imagen , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad
19.
Comput Biol Med ; 101: 128-145, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30138774

RESUMEN

BACKGROUND: This study examines the association between six types of carotid artery disease image-based phenotypes and HbA1c in diabetes patients. Six phenotypes (intima-media thickness measurements (cIMT (ave.), cIMT (max.), cIMT (min.)), bidirectional wall variability (cIMTV), morphology-based total plaque area (mTPA), and composite risk score (CRS)) were measured in an automated setting using AtheroEdge™ (AtheroPoint, CA, USA). METHOD: Consecutive 199 patients (157 M, age: 68.96 ±â€¯10.98 years), L/R common carotid artery (CCA; 398 US scans) who underwent a carotid ultrasound (L/R) were retrospectively analyzed using AtheroEdge™ system. Two operators (novice and experienced) manually calibrated all the US scans using AtheroEdge™. Logistic regression (LR) and Odds ratio (OR) was computed and phenotypes were ranked. RESULTS: The baseline results showed 150 low-risk patients (HbA1c < 6.50 mg/dl) and 49 high-risk patients (HbA1c ≥ 6.50 mg/dl). The fasting blood sugar (FBS) was highly associated with HbA1c (P < 0.001). Except for cIMTV, all phenotypes showed an OR > 1.0 (P < 0.001) for left common carotid artery (LCCA), right carotid artery (RCCA), and mean of left and right common carotid artery (MCCA). After adjusting the FBS, the OR for mTPA showed a higher risk for LCCA, RCCA, and MCCA. The coefficient of correlation (CC) between phenotypes and HbA1c were strong and inter-CC between cIMT and mTPA/CRS was above 0.9 (P < 0.001). The statistical tests showed that phenotypes were significantly associated with diabetes (P-value<0.0001). CONCLUSIONS: All phenotypes using AtheroEdge™, except cIMTV, showed a strong association with HbA1c. mTPA and CRS were equally strong phenotypes as cIMT. The CRS phenotype showed the strongest relationship to HbA1c.


Asunto(s)
Enfermedades de las Arterias Carótidas , Arteria Carótida Común/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Diabetes Mellitus , Hemoglobina Glucada/metabolismo , Modelos Cardiovasculares , Placa Aterosclerótica , Anciano , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/sangre , Placa Aterosclerótica/diagnóstico por imagen , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA