Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 34(24): 8336-46, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920637

RESUMEN

BACE, a ß-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the ß-secretase pathway and a lowering of CNS amyloid-ß (Aß) levels. The interaction of the ß-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aß and soluble APPß (sAPPß), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPß, and Aß in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPß, and Aß were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPß and sAPPα kinetics were similar, but both significantly slower than Aß. BACE inhibition resulted in decreased labeled sAPPß and Aß in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPß and Aß both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the ß-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Sistema Nervioso Central/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Isótopos de Carbono/metabolismo , Línea Celular Tumoral , Sistema Nervioso Central/efectos de los fármacos , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoprecipitación , Leucina/metabolismo , Macaca mulatta , Espectrometría de Masas , Neuroblastoma , Fragmentos de Péptidos , Transfección
2.
Eur J Mass Spectrom (Chichester) ; 20(4): 337-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25420346

RESUMEN

Gas-phase ion-molecule reactions [IMR] of various boron- and silicon-containing neutrals were investigated as a potential route for detecting phosphorylation within peptides in the negative ion mode. Trimethyl borate (TMB), triethyl borate (TEB) and N,O- Bis(trimethylsilyl)acetamide (TMSA), unlike diethylmethoxyborane (DEMB), diisopropoxymethylborane [DiPMB] and chlorotrimethylsi- Lane (TMSCIL], reacted differently if a phosphate moiety was present and thus are suitable to detect phosphorylation. During multistage collision-induced dissociation experiments of the reaction products of IMR with TMB and TEB, the [LSsF - 4H + B]- ion formed a modified y2 fragment allowing the phosphorylation site to be assigned, unlike reaction products of DEMB and DiPMB which lost both the phos- phoric acid and the boron-containing moiety.


Asunto(s)
Compuestos de Boro/química , Espectrometría de Masas/métodos , Péptidos/análisis , Péptidos/química , Silicio/química , Boratos/química , Gases/química , Péptidos/metabolismo , Fosfopéptidos/análisis , Fosfopéptidos/química , Fosforilación
3.
Eur J Mass Spectrom (Chichester) ; 20(2): 177-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24895778

RESUMEN

Gas-phase ion-molecule reactions of four boron-containing neutrals were explored as a means for differentiation between isobaric phospho- and sulfocarbohydrates. Phosphorylation and sulfation impose an addition of 80 Da to the molecular mass, so for low-resolution mass spectrometers compounds that have such modifications will appear at the same nominal mass-to-charge (m/z) ratio. However, the ions of these isobaric species behave differently in ion-molecule reactions. All four evaluated neutral molecules [trimethyl borate (TMB), triethyl borate (TEB), diethylmethoxyborane (DEMB) and diisopropoxymethylborane (DIPMB)] proved to be reactive towards phosphorylated sugars and unreactive towards sulfated carbohydrates. In addition, TMB and TEB were found suitable for distinguishing positional isomers of phosphorylated carbohydrates, while reactions with DEMB and DIPMB were successful in differentiating phosphorylated, sulfated and unmodified deprotonated sugars. Similar reactions in the positive ion mode (alkali cationised) were found to be less conclusive.


Asunto(s)
Carbohidratos/química , Gases/química , Iones/química , Compuestos de Fósforo/química , Compuestos de Azufre/química , Carbohidratos/análisis , Transición de Fase , Compuestos de Fósforo/análisis , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Azufre/análisis
4.
Mol Neurodegener ; 7: 14, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22512932

RESUMEN

BACKGROUND: Abnormal proteostasis due to alterations in protein turnover has been postulated to play a central role in several neurodegenerative diseases. Therefore, the development of techniques to quantify protein turnover in the brain is critical for understanding the pathogenic mechanisms of these diseases. We have developed a bolus stable isotope-labeling kinetics (SILK) technique coupled with multiple reaction monitoring mass spectrometry to measure the clearance of proteins in the mouse brain. RESULTS: Cohorts of mice were pulse labeled with 13C6-leucine and the brains were isolated after pre-determined time points. The extent of label incorporation was measured over time using mass spectrometry to measure the ratio of labeled to unlabeled apolipoprotein E (apoE) and amyloid ß (Aß). The fractional clearance rate (FCR) was then calculated by analyzing the time course of disappearance for the labeled protein species. To validate the technique, apoE clearance was measured in mice that overexpress the low-density lipoprotein receptor (LDLR). The FCR in these mice was 2.7-fold faster than wild-type mice. To demonstrate the potential of this technique for understanding the pathogenesis of neurodegenerative disease, we applied our SILK technique to determine the effect of ATP binding cassette A1 (ABCA1) on both apoE and Aß clearance. ABCA1 had previously been shown to regulate both the amount of apoE in the brain, along with the extent of Aß deposition, and represents a potential molecular target for lowering brain amyloid levels in Alzheimer's disease patients. The FCR of apoE was increased by 1.9- and 1.5-fold in mice that either lacked or overexpressed ABCA1, respectively. However, ABCA1 had no effect on the FCR of Aß, suggesting that ABCA1 does not regulate Aß metabolism in the brain. CONCLUSIONS: Our SILK strategy represents a straightforward, cost-effective, and efficient method to measure the clearance of proteins in the mouse brain. We expect that this technique will be applicable to the study of protein dynamics in the pathogenesis of several neurodegenerative diseases, and could aid in the evaluation of novel therapeutic agents.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Animales , Isótopos de Carbono , Cromatografía Liquida/métodos , Inmunoprecipitación , Marcaje Isotópico , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trazadores Radiactivos
5.
PLoS One ; 7(6): e38013, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675504

RESUMEN

Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aß) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.


Asunto(s)
Apolipoproteínas E/metabolismo , Sistema Nervioso Central/metabolismo , Adulto , Péptidos beta-Amiloides , Animales , Apolipoproteínas E/sangre , Encéfalo/metabolismo , Isótopos de Carbono , Humanos , Cinética , Ratones , Persona de Mediana Edad , Isoformas de Proteínas/sangre , Isoformas de Proteínas/metabolismo , Adulto Joven
6.
Rapid Commun Mass Spectrom ; 22(8): 1288-94, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18351715

RESUMEN

We report for the first time a coupling of gas-phase ion-molecule reactions with chromatographic separations on a quadrupole ion trap mass spectrometer. The interface was accomplished by using a pulsed valve for the introduction of a volatile neutral into the ion trap. The pulsed valve controller is synchronized with the mass spectrometer software. The setup requires some minor modifications to the vacuum system of the commercial quadrupole ion trap but most of the modifications are external to the mass spectrometer. Two applications of this interface are described: differentiation between two phosphoglucose positional isomers and detection of a phosphopeptide in a peptide mixture. Both applications are using the reactivity of trimethoxyborate towards a phosphate moiety in the negative ion mode. The detection of phosphopeptides hinges on our findings that non-phosphorylated peptide anions do not react with trimethoxyborate. This LC/MS detection can be easily visualized in terms of selected reaction monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA